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Magnetic fluctuations in the classicalXY model: The origin of an exponential tail
in a complex system
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We study the probability density function for the fluctuations of the magnetic order parameter in the
low-temperature phase of theXY model of finite size. In two dimensions, this system is critical over the whole
of the low-temperature phase. It is shown analytically and without recourse to the scaling hypothesis that, in
this case, the distribution is non-Gaussian and of universal form, independent of both system size and critical
exponenth. An exact expression for the generating function of the distribution is obtained, which is trans-
formed and compared with numerical data from high-resolution molecular dynamics and Monte Carlo simu-
lations. The asymptotes of the distribution are calculated and found to be of exponential and double exponen-
tial form. The calculated distribution is fitted to three standard functions: a generalization of Gumbel’s first
asymptote distribution from the theory of extremal statistics, a generalized log-normal distribution, and ax2

distribution. The calculation is extended to general dimension and an exponential tail is found in all dimensions
less than 4, despite the fact that critical fluctuations are limited toD52. These results are discussed in the light
of similar behavior observed in models of interface growth and for dissipative systems driven into a nonequi-
librium steady state.
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I. INTRODUCTION

A. Motivation for the present work

The fluctuations in a global measure of a many-body s
tem are often assumed to be of Gaussian form about
mean value@1#. This assumption is nearly always true if th
system in question can be divided into statistically indep
dent microscopic or mesoscopic elements@2#, as dictated by
the central-limit theorem~see Appendix A!. However, in cor-
related systems, where this is not the case, there is no
versal reason to expect the central-limit theorem to ap
The spectrum of fluctuations can then take on a multitude
different mathematical forms, including those of other, we
defined, limit distributions.

In this context, the most studied correlated systems
critical systems. At the critical point of a second-order pha
transition, a correlation length,j, diverges from the micro-
scopic scale~taken as unity throughout the paper!. It is only
cut off, in an ideal world, by the macroscopic or integr
scaleL. The probability density function~PDF! for the order
parameterm associated with the diverging correlation leng
is essentially the exponential of the free energyP(m)
;exp„2F(m)/kBT… and takes on an approximately Gaus
ian form as long as the Landau approximation,F(m);a
1bm21•••, is valid. Close to the critical point, the Landa
approximation breaks down and the PDF becomes n
Gaussian. The key assumption of the renormalization-gr
theory of critical phenomena is that the critical PDF rema
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scale invariant in the thermodynamic limit and can be o
tained from the fixed point of a renormalization-group tran
formation @3,4# ~see Appendix A!. Thus, renormalization-
group theory can be regarded as a generalization of
central-limit theorem to systems that are correlated over
length scales. The critical PDFs can be termed ‘‘universa
in that, when properly normalized, they depend on at mo
few basic symmetries that define the universality class of
system. A non-Gaussian and universal PDF is therefor
direct signature of the fluctuation-driven critical phenome
that have revolutionized modern statistical mechanics@5#.
Analytical and numerical work@6–9# on Ising, Potts, andXY
models has shown that a generic feature of such systems
skewness, with large fluctuations below the mean, towa
small order-parameter values.

Correlations that are both strong and long range ar
feature not only of critical phenomena but also of syste
driven far from equilibrium. However, in the case of drive
systems, the absence of a microscopic theory means tha
has to rely heavily on empirical observations from expe
ment and numerical simulation. Labbe´ et al. @10# have
shown that the PDF for the energy injected into a clos
turbulent flow at constant Reynolds number is also n
Gaussian and universal. In this case, ‘‘universal’’ means t
the PDF, when suitably normalized, does not depend on
Reynolds number or several other parameters~for example,
the type of fluid!. The PDF again has a marked skewne
with an apparent exponential tail for fluctuations towar
low energies.

The present work is motivated by our empirical observ
tion @11,12# that the universal PDF of energy fluctuations
the turbulence experiment@10,13# is, within experimental er-
ror, of the same functional form as that of the univers
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P(m) for the critical system that we have studied. The lat
is the spin-wave limit to the low-temperature phase of
two-dimensional! ~2D! XY model @14,15# that is known to
capture the critical behavior of the full 2DXY model @16–
20#. The distribution is shown in Fig. 2: it is asymmetri
with fluctuations below the mean approaching an exponen
asymptote, while those above the mean approach a do
exponential. This observation led us to the proposition t
many systems, both equilibrium and nonequilibrium, shar
the property of long-range correlations and multiscale fl
tuations, should share the same features, at least to a
approximation@11,21#. The proposition appears to be stri
ingly confirmed in Ref.@21#, where, from numerical simula
tion, similar behavior is observed in a number of differe
systems: for order-parameter fluctuations in the tw
dimensional Ising model and in the two-dimensional per
lation problem, as well as for fluctuations in global quantit
for models of forest fires and avalanches, driven into a s
organized critical state. This appears to contradict the i
that the PDF should depend on the particular universa
class of the model in hand. One possible way of accoun
for our observations is that many universality classes sh
common features, with the differences between them app
ing either outside the range of physical observation, or be
hidden by experimental error. There are therefore many o
questions regarding a possible and much desired conne
between critical phenomena and nonequilibrium system
well as regarding the details of the PDF in critical systems
is these questions that we address in the current paper, v
analytic study of the PDF for order-parameter fluctuations
a finite XY model in arbitrary dimension.

B. Normalization of the order parameter

We discuss order-parameter fluctuations of finite syste
in terms of distributions that are calculated in the thermo
namic limit,N→`. As discussed in Appendix A, it is esse
tial to normalize the order parameter by an appropri
power of N5LD in order to obtain a distribution of finite
width, or, equivalently, a form forP(m) that is independen
of system size. By extending the scaling hypothesis to
clude finite systems@22#, the following form of P(m) has
been proposed:

P~m,L !;Lb/nPL~mLb/n,j/L !. ~1!

Here b and n are the conventionally defined critical exp
nents for the magnetization and correlation lengthj, respec-
tively @22#. The appropriate normalization of the order p
rameter is provided by the factorL2b/n while fixing different
ratios j/L will in principle result in an infinity of different
limit distributions asL→`. We concentrate on the case of
truly critical system with correlations over all length scale
which should result in maximum deviation from the Gau
ian form. Here the dependence onj can be dropped from Eq
~1!, andPL(m) should closely approximate a single unive
sal function of the variablemLb/n for all values ofL. In this
form it is independent of the microscopic details of the s
tem, although it could indeed depend on the universa
class of the transition through the critical exponents.
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Equation~1! is demystified somewhat by recognizing th
the normalizing factorL2b/n is, in such an ideal system
proportional to the mean value of the order parameter,^m&.
Further, one of the key properties of a critical system is t
the standard deviation of the distribution,s, scales with sys-
tem size in the same way as the mean value. This prope
which is a direct result of the hyperscaling relation and t
we refer to as the hyperscaling condition, means that Eq.~1!
can alternatively be written in the formP(m)
51/sPL(m/s). Thus s provides, as might be intuitively
expected, the correct normalization of the order parame
such that a reasonable PDF of finite width is obtained in
limit N→`. In this paper, in addition, we shift the distribu
tion with respect to the mean value and define

sP~m!5P~u!, ~2!

where

u5
m2^m&

s
. ~3!

In this representation one expects the PDF to fall, in
thermodynamic limit, onto a single universal curve. Provid
that finite-size corrections to scaling are negligible, o
should observe data collapse onto this universal curve
large but finite system sizes.

C. The two-dimensionalXY model

The model that we study, the harmonic spin-wave limit
the XY model, is defined in Sec. II for the case of two d
mensions,D52. This is the dimension of most interest in th
present context, as the system is at its lower critical dim
sion. At low temperature, the couplingJ/kBT is an exactly
marginal variable that characterizes a line of critical points
zero applied field@23#. The critical line is separated from th
paramagnetic phase by the Kosterlitz-Thouless-Berezin
phase transition atTKTB @16,17#. The critical phase that ex
ists below this temperature is an attractive subject of inv
tigation from both an analytic and a numerical point of vie
Its physics is entirely captured by the harmonic Hamilton
@16,19,20# with the result that many calculations can be p
formed microscopically, without the need to use renorm
ization techniques, or the scaling hypothesis. From a num
cal point of view, simulation results near a single, isolate
critical point are often complicated by a shift in the effecti
critical temperature by an amount scaling to zero asL21/n

@7–9#, making it unclear exactly which temperature shou
be studied. Indeed, numerical studies of Ising and Potts m
els @7–9# do find distributions whose form depends on te
perature in the critical region~see Appendix A!. In the 2D
XY model, as the system is critical over a range of tempe
tures there are no such technical problems and data forP(m)
can be collected at all points belowTKTB . These factors
make the 2DXY model an ideal system with which to stud
the effects of critical correlations.

The finite-size scaling for the 2DXY model has been
discussed in our previous publications@14,15#. In this work,
we began, following Berezinskii@16# and Rácz and Plischke
6-2
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MAGNETIC FLUCTUATIONS IN THE CLASSICAL XY . . . PHYSICAL REVIEW E 63 041106
@24#, an exact calculation for the PDF of order-parame
fluctuations. This calculation is completed and presente
detail in the current paper~Sec. II!. It shows explicitly that
the non-Gaussian behavior in the 2DXY model stems from
the influence of all length scales from the microscopic to
macroscopic scale. We propose that the same is true for o
complex systems including those driven far from equil
rium. This provides a basis for understanding the appa
overlap of their PDFs and provides an unexpected exp
mental motivation for studying a system as simple as the
XY model.

Two results coming out of our calculation are worthy
note at this stage. The first is an exact analytic result tha
rather surprising given the previous discussion and the g
eral belief concerning the dependence of the PDF on uni
sality class: shifting the curve with respect to the mean,
~2!, gives us universal data collapse, not only for all syst
size but also for all temperatures for which the harmo
Hamiltonian is valid. The ratio of exponentsb/n depends
linearly on temperature, from which we deduce that the P
is independent of the value of the exponents along the lin
critical points. One should note, however, that these po
are rather special and the result cannot necessarily be g
alized to all critical points: not all the usual critical exp
nents are defined. For example, the exponentsb and n are
not individually defined, but their ratio is@17#. The usual
scaling relations are valid in terms of the ratiob/n only and
this ‘‘weak scaling’’ @18# means that there is only one ind
pendent critical exponent,h52b/n @17#, compared with two
for a regular critical point. This is all that is required for th
analysis leading to Eq.~1!, but is not sufficient to ensure
unique functional form for the general problem with tw
exponents. However, it does seem consistent with the
that only small differences separate results for different u
versality classes.

The second result, which is relevant to mention at t
stage, concerns the finite-size scaling data collapse of
~2!. We find that the hyperscaling propertys;^m& is not a
necessary condition for data collapse onto a non-Gaus
function. With our definition~2!, the first two moments of
P(m) fall trivially out of the calculation and all that is re
quired for data collapse is that the moments^up& for p.2
are independent of the system size. This is the most gen
condition for non-Gaussian data collapse, while the P
only satisfies the scaling hypothesis in the form of Eq.~1!, if
the hyperscaling condition is satisfied. We give, in Sec. II
an explicit example where data collapse onto the unive
curve of the 2DXY model occurs, but where the hypersca
ing condition is not satisfied. If we make an expansion of
order parameter about a perfectly ordered state (m51) in
powers of temperature, keeping only the linear term, th
^m& diverges logarithmically with system size@25,26#, while
the standard deviation is a constant. The ratios/^m& is ac-
tually an increasingfunction of system size throughout th
physical domain. It is only when the order parameter is c
rectly defined on the interval@0,1# that the hyperscaling re
lation is reestablished, but written in the form~2! the two
distinct variables have the same universal PDF, even out
the range of temperature and system size for which the
04110
r
in

e
er

-
nt
ri-
D

is
n-
r-
.

c

F
of
ts
er-

ea
i-

s
q.

an

ral
F

,
al

e

n

r-

de
e-

velopment gives an accurate representation of the true o
parameter. This result is more than a mathematical curios
the harmonic approximation for the 2DXY model maps di-
rectly onto the Edwards-Wilkinson~EW! model @27–29,31#
for interface growth and the linearized order parameter
related to the square of the interface width,w: m512w2.
Our PDF, therefore, corresponds precisely to that for in
face width fluctuations and for which, in two dimensions, t
hyperscaling condition for the observablew2 is explicitly
violated.

D. Organization of the paper

The rest of the paper is organized as follows. In Sec.
we present details of the calculation for the PDF in the
XY model. ~For convenience, throughout this paper we u
the term ‘‘XY model’’ to refer to either the model defined b
the spin-wave Hamiltonian or the fullXY model over a tem-
perature range in which the spin-wave approximation
valid. This should not cause any confusion in reading
present paper, but our choice of terminology should be bo
in mind when comparing to other work on theXY model.!
We show explicitly that it is a universal function of syste
size and of temperature and find an exact expression for
characteristic function~Sec. II A!. Transforming the distribu-
tion numerically, we compare it in detail with extensiv
Monte Carlo and molecular-dynamics simulations of the f
XY model and show that it is clearly the complete solution
the problem~Sec. II B!. We calculate the asymptotic value
of the distribution for large deviations below and above t
mean, which we find to be exponential and double expon
tial, respectively~Secs. II C and II D!.

In Sec. III, we try to fit the computed PDF to standa
functions by comparing the moment expansion of the gen
ating function with those of the Fourier transform of the te
function. Three functions are considered:

P~u!;5
expa@u2s2exp~u2s!#,

1

s2u
exp$2@ ln~s2u!2a#2%,

~s2u!n/221e2a(s2u).

~4!

The PDF is fitted to an excellent approximation over t
physical range by the first two functions, while the thi
gives a reasonable but slightly inferior fit. The first functio
with a an integer, comes from extremal statistics~Sec. III A!.
It is Gumbel’s first asymptote, corresponding to the PDF
the ath largest value from ensembles ofN random numbers
@32#. The interpretation witha noninteger~we find a5p/2)
is not clear, but a connection between critical phenom
and extremal statistics is a very appealing concept@33,34#.
The second function is a generalized log-normal distribut
~Sec. III B!. Unlike the first curve, it does not have the co
rect asymptotic forms but despite this it fits just as well ov
the physical domain. The third function is ax2 distribution
describing identical and statistically independent degree
freedom~Sec. III C!. It gives reasonable qualitative agre
6-3
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ment indicating that a good, zeroth-order description o
correlated system is in terms of a reduced number of sta
tically independent variables. However, this description
its limits, as shown by the fact that this function fits the ex
PDF slightly less well than the other two. This variety
different fits suggests that one should treat the physical
terpretations that they offer with caution; however, even w
this caveat in mind they still represent useful mathemat
tools. To investigate this point further, in Sec. III D we d
rive an approximate functional form for the curve using
analysis due to Pearson that reconstructs the PDF from
four principal moments, which in this case have been ca
lated analytically. The Pearson analysis gives a quite dif
ent function, which also gives a good description of the ex
PDF over a physical range ofu. This serves to emphasiz
that, given zero mean and unit variance, the shape of
curve over a typical experimental range is essentially defi
by its skewness,g, and kurtosis,k. Therefore, an alternative
way of summarizing the observed universality@11,21# is that
g andk, for several different systems, have the same sc
invariant values as they do for theXY model.

In Sec. IV, we extend our calculation toD dimensions,
which apart fromD52 are all noncritical. Despite this, w
find evidence of the integral scale for all dimensionsD,4.
For D51, the PDF for the linearized order parameter sho
an exponential tail. However, we show numerically that
PDF for the correctly defined order parameter is quite diff
ent and is just what one would expect for a paramagn
system without correlations~Sec. IV A!. The caseD53
holds a final surprise~Sec. IV B!: despite the long-range or
der of the low-temperature phase, the PDF is still no
Gaussian function. The temperature is a dangerously ir
evant variable in the ordered phase of the 3DXY model with
the result that the susceptibility remains weakly divergen
low temperature@35#. The result of this divergence is that th
asymptotes of the PDF for large fluctuations are exponen
below the mean and exp(2cstu3) above the mean~where
‘‘cst’’ is a constant!. The hyperscaling relation, in this cas
is again violated. The divergence disappears at the up
critical dimension and we find a truly Gaussian PDF forD
>4.

In Sec. V, we conclude by returning to the physical re
sons for the exponential tail in the PDF. TheXY model is
diagonizable in reciprocal space reducing it to a model
statistically independent degrees of freedom: spin-wave
plitudes at wave vectorq, fq . The amplitudeŝfq

2& diverge
at small q and are the modes that give the non-Gauss
fluctuations. In one dimension they completely destroy m
netic order, in two dimensions they give critical behavi
and between two and four dimensions they give remn
critical behavior in the form of a dangerously irrelevant va
able.

II. PROBABILITY DENSITY FUNCTION FOR THE
ORDER PARAMETER IN THE 2D XY MODEL

A. Analytic expression

The 2DXY model is defined by the Hamiltonian

H52J(
^ i , j &

cos~u i2u j !, ~5!
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where the anglesu i refer to the orientation of classical spin
Si confined in a plane and where the sum is over near
neighbor spins. In the following we consider a square latt
of sideL, with periodic boundaries. The instantaneous m
netization is a two-dimensional vectorm that, in zero field, is
free to point in any direction. We define the order parame
as the scalarm5umu,

m5
1

N (
i 51

N

cos~u i2 ū !, ~6!

whereū5tan21(( i sinui /(i cosui) is the instantaneous mag
netization direction. Within small corrections, which disa
pear in the thermodynamic limit, this corresponds to t
more conventional definition

m5
1

N
AS (

i 51

N

Si D 2

.

For all temperatures belowTKTB , the renormalization-group
trajectories flow, at large length scale, towards a regi
where only spin-wave excitations are relevant@19,20#. The
physics of the low-temperature phase is therefore comple
captured by the quadratic Hamiltonian

H5
J

2 (
^ i , j &

~u i2u j !
2. ~7!

We therefore restrict ourselves, in the following calculatio
to this Hamiltonian and neglect the periodicity of the va
ablesu i . Our calculation cannot therefore take into accou
the presence of vortex pairs. Close toTKTB in two dimen-
sions and also in one dimension, where free vortices
relevant variables, we would expect a deviation from t
behavior shown in Fig. 2. This point is discussed furth
below.

We now calculate the PDFP(m) that the system be in a
state with magnetizationm, using the standard property tha
a probability density function may be defined by the value
its moments@36#. Indeed,P(m) can be expressed in terms o
its characteristic function,P̃(x):

P~m!5E
2`

` dx

2p
eimxP̃~x!, ~8!

which can in turn be expanded in a Taylor series who
coefficients are the moments^mp&:

P̃~x!5 (
p50

`
xp

p!

]pP̃

]xp U
x50

5 (
p50

`
~2 ix !p

p!
^mp&, ~9!

so that

P~m!5E
2`

` dx

2p
eimx(

p50

`
~2 ix !p

p!
^mp&. ~10!
6-4
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Equation~10! assumes that the series converges and tha
the moments exists. Note that this last feature demands
P(m) falls off faster than any power law ofm.

The program for calculatingP(m) is therefore to calcu-
late the momentŝmp&, sum the series, and transform th
final result. To this end it is useful to define the Green fun
tion in Fourier space,

G~q!5
1

422 cosqx22 cosqy
, ~11!

where qx and qy take the discrete values (2p/L)n of the
Brillouin zone with n50, . . . ,L21. We also define the se
of constantsgk5(qG(q)k/Nk. The value ofg1 diverges
logarithmically with system size, illustrating the critical n
ture of the low-temperature phase@20,26#: g1
5(1/4p)ln(CN), C51.8456 @37#. The values ofgk , k>2
are independent ofN in the thermodynamic limit. We find
g2.3.866731023, g3.7.571931025, g451.762631026,
and that for largek, gk behaves like (2p)122k/2(k21); see
Appendix B.

The first moment is easily calculated within this appro
mation ~see Appendix B and Refs.@26,14#!. One finds that
^m& decreases algebraically with the size, as one would
pect from finite-size scaling@22#,

^m&5~NC!2kBT/8pJ. ~12!

As discussed above, while the critical exponentsb andn are
not individually defined for the 2DXY model, their ratio is
defined@18# and the system obeys what Kosterlitz refers
as weak scaling@18#. Through Eq.~12!, the ratio of expo-
nents is defined:b/n5h/25T/4pJ.

For higher moments we need a more systematic appro
A specific property of the quadratic Hamiltonian~7! is that
the moments can be calculated using the tools of Gaus
integration @14,38#. In particular, by the application o
Wick’s theorem, propagators of order 2p in reciprocal space
can be exactly expressed in terms of quadratic propagato
that the pth moment is proportional tôm&p. One finds
@15,39#

^mp&5^m&p
1

~2N!p (
r1 , . . . ,rp

(
s1 , . . . ,sp561

3expF2
t

2 (
iÞ j

s iGR~r i2r j !s j G , ~13!

where t is the reduced temperaturekBT/J and GR(r ) the
regularized Green function(qÞ0G(q)exp(iq•r )/N. In order
to compute each moment of orderp, we have to evaluate th
sums over the positions and operatorss i . The idea is to
expand the exponential term~13! and introduce a diagram
matic representation of each quantity computed. For
ample, we represents iGR(r i2r j )s j by a line betweeni and
j on a lattice ofp sites. The general term of the expansion
then a set of graphs with a combinatorial factor for the sy
metries. Sinces i

251, only closed diagrams are relevant, t
factor 2p being canceled by the sum over all thes i . The
04110
all
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factor of tk is common to all graphs withk lines connected
together, with an even connectivity at each vertex. For
ample, up to the second-order term int, we have

^mp&5^m&pF11S 2t

2 D 2 1

2!
2p~p21!

1

N (
r

GR
2~r !1•••G .

~14!

The term( rGR
2(r )/N25(qÞ0G(q)2/N25g2 is the value of

the one loop graph with two lines, as shown in Fig. 1~a!.
There is an additional symmetry factor 23p(p21), which
is the number of possible positions for such diagrams c
necting two lines on a closed graph on a lattice ofp points.
For the third-order term int, we have only one diagram with
three vertices, of valueg3 , Fig. 1~b!. The symmetry factor is
equal to p(p21)(p22)3432. The factor 432 comes
from the number of possible ways of connecting three lin
together. For the fourth-order term, there are three differ
graphs, two of which are shown in Fig. 1~c!. The first has
three loops and two vertices, the second, of valueg4 , has
one loop and four vertices. The third graph, not shown, c
sists of two disconnected one-loop graphs of the type sho
in Fig. 1~a!. In general, at each order int, we have the
product of different closed diagrams, with one or ma
loops. It appears that the values of multiple-loop grap
such as the first one in Fig. 1~c!, are zero in the thermody
namic limit. We therefore find that only the one-loop di
grams are relevant and the value for such a diagram, wik
lines andk vertices, isgk . We can now express thepth
moment of the magnetization as

FIG. 1. Diagrams contributing to the distribution:~a! to order
t2, ~b! to ordert3, and c! to ordert4.
6-5
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^mp&

^m&p
511 (

k>2
S 2t

2 D k 1

k!

3(
r>1

(
k11•••1kr5k,ki>2

3gk1
•••gkr

C~k1 , . . . ,kr !

3p~p21!•••~p2k11!, ~15!

with C(k1 , . . . ,kr) a combinatorial factor that takes into a
count the possible ways of putting togetherk lines on r
graphs, the first withk1 lines, the second withk2 lines, etc.,
including the symmetries. For example, the factor associa
with one triangle isC(3)5432. It is then relatively easy to
show that

C~k1 , . . . ,kr !5
2k2rk!

~k11•••1kr !~k21•••1kr !•••kr
.

~16!

Next, we can use the fact that every diagram is invariant
the action of the groupSr of permutations of itsr single
elements, so that, instead of Eq.~16!, one can use a mor
convenient form for the combinatorial factor:

1

r ! (
sPSr

C~ks(1) , . . . ,ks(r )!5
1

r !

2k2rk!

k1•••kr
. ~17!

Setting f ki
5gki

(2t)ki/2ki , we arrive at the result

^mp&

^m&p
511 (

k>2
(
r 52

k
1

r ! (
k11•••1kr5k

f k1
••• f kr

3p~p21!•••~p2k11!

511 (
k>2

(
r 52

k
1

r ! (
k11•••1kr5k

f k1
••• f kr

]k

]zk
zpU

z51

5expF (
k52

`
gk

2k
~2t!k]z

kGzpU
z51

. ~18!

For p52, we find ^m2&/^m&2511g2t2/2 and definings
5A^m2&2^m&2 we thus arrive at the hyperscaling conditio
that the ratios/^m& is independent of the system size. Hen

s5Ag2

2

kBT

J
^m&. ~19!

One can now substitute for^mp& in Eq. ~10! using Eq.~18!
and after rearranging the summations the distribution
finally be expressed as an integral, depending on the va
of the one-loop diagramsgk only,

P~m!5E
2`

` dx

2p
expF ix~m2^m&!1 (

k52

`
gk

2k
~ i t^m&x!kG .

Changing variables,x→x/s, and using Eq.~19! we find
04110
d

y

n
es

P~m!5E
2`

` dx

2ps
expF ix

m2^m&
s

1 (
k52

`
gk

2k S ixA 2

g2
D kG ,

~20!

which is the principal result of Ref.@15#. Defining sP(m)
5P(u), we see that the functionP depends uniquely on the
variable u5(m2^m&)/s and thegk , k>2. As thegk are
constants in the thermodynamic limit,P(u) is a universal
function, independent of both system size and temperat
The asymmetry comes from the fact that the rat
gk /(g2/2)k/2, k>3 are nonzero and this constitutes the a
normal influence of the integral scale. If, in the thermod
namic limit, k52 were the only nonzero term, one wou
arrive at a Gaussian PDF centered on^m&. Departure from a
Gaussian function is typically characterized by the skewne
g5^u3&, and kurtosis,k5^u4& @40#. We find

g52
g3

~g2/2!3/2
520.8907,

~21!

k5313
g4

~g2/2!2
54.415.

Although we can calculate the asymptotic behavior ofgk
for largek, we are not able to compute the constants anal
cally and so we cannot sum the series~20!. However, we can
transform it into a very much more useful form by keepingN
large but finite and inverting the sums overq andk. The even
and odd terms are separated and summed independently
we eventually find

P~u!5E
2`

` Ag2

2

dx

2p
expH ixuAg2

2

2(
qÞ0

F i

2
xG~q!/N2

i

2
arctan„xG~q!/N…

1
1

4
ln@11x2G~q!2/N2#G J . ~22!

The sum overq and the integral overx in Eq. ~22! can now
be performed numerically, allowing the evaluation ofP(u).

B. Comparison with simulation

To test the above calculation and to verify its scali
properties, we have carried out extensive numerical sim
tions of the 2DXY model with full cosine interaction, Eq
~5!, for different values of temperature and system size.
addition, we have also done microcanonical molecul
dynamics ~MD! simulations to check the possible depe
dence of the PDF for fluctuations on the statistical ensem

The Monte Carlo simulations were performed with 18

Monte Carlo steps per spin, with 106 steps used for equili-
bration. The MD simulation was carried out for systems ofN
classical rotators@41#, with Hamiltonian
6-6
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HR5(
i 51

N u̇ i
2

2
1J(

^ i j &

@12cos~u i2u j !#. ~23!

The equations of motion were integrated numerically, us
a Verlet algorithm. In order to explore the low-temperatu
fluctuation regime, the initial configuration of the system w
chosen with the spins pointing in the same direction and w
a Gaussian distribution of momenta. The system was t
equilibrated for a time of 1062107 sweeps and data collecte
over a time span of 1082109 sweeps according to the size
the system. Note that one cannot use the harmonic inte
tion ~7! to study deterministic dynamics in the microcano
cal ensemble, as this would allow no coupling between
spin-wave modes and no evolution would be possible. T
nonlinearity of the cosine interaction allows mixing betwe
the normal modes and the sampling of equilibrium sta
Here we do not report work at high enough energies to al
vortex formation @42,43# with any significant probability.
Rather, the nonlinearity plays the role of the heat bath in
canonical ensemble, while the physics is still correctly d
scribed by the harmonic part of the interaction.

The numerical integration of Eq.~22!, performed with a
fast Fourier transform~FFT! algorithm@44#, is shown in Fig.
2, where it is compared with Monte Carlo results forT/J
50.1 andN5322. The theoretical curve is clearly in ex

FIG. 2. The PDF, as obtained from a fast Fourier transfo
~FFT! of Eq. ~22!, compared with MC simulation of a 2DXY
model at temperatureT50.1 of sizeN5322 ~upper: natural scale
lower: semilog scale!.
04110
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s
h
n

c-

e
e
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w

e
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tremely good agreement with the numerical data. The cu
is asymmetric, with what appears to be an exponential
for fluctuations below the mean and a much more rapid
off in amplitude for fluctuations above the mean.

In Fig. 3, we show the PDF for fluctuations inm obtained
from MC simulation for fixed system size and varying tem
perature, as well as MD for fixed temperature and differ
system sizes. The result of Ref.@11# and Sec. II of this paper
is that, for the harmonic Hamiltonian, Eq.~7!, P(u) is inde-
pendent of both system size and temperature, while we h
explicitly tested this result against the PDF generated for
full Hamiltonian, Eq. ~5!. Qualitative agreement is clearl
excellent, independent of the ensemble used, but there
small systematic deviations in the tails, when observed o
logarithmic scales@45#, as shown in Figs. 4 and 5. We ca
only expect agreement between the analytic result and si
lation in the range of temperature sufficiently belowTKTB
such that vortex pairs do not influence the PDF@14#. Even in
the absence of vortices, one must expect small variati

FIG. 3. The PDF for fluctuations in dimensionD52 from MC
and MD simulations. The first set of data corresponds to canon
MC simulation for a system of sizeN5322 at temperatureT
50.1, 0.3, 0.5. The second set of data corresponds to microcan
cal MD simulation at temperatureT.0.7 and size N
5162, 322, 642.

FIG. 4. The PDF, as obtained from a fast Fourier transfo
~FFT! of Eq. ~22!, in dimensionD52 compared with Monte Carlo
results for a system of sizeN5322 at temperature T
50.1, 0.3, 0.5, 0.7.
6-7
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from our theoretical result for small system sizes that st
from the utilization of Eq.~5! rather than Eq.~7!. In a
renormalization-group treatment, the nonlinearities
Hamiltonian~5! scale away on changing the length scale a
the Hamiltonian is replaced by an effective harmonic Ham
tonian at higher temperature@20#. For example, atT/J
50.7, forL532, we find^m&50.76 from simulation, while
Eq. ~12! gives ^m&50.81. The effective coupling constan
can be calculated by expanding the cosine and approxim
ing the nonlinear terms using a Hartree approximation@19#.
Renormalization of the nonlinearities introduces a mic
scopic length scalea8 that gives small corrections whe
compared with the calculated PDF. However, this len
scale is fixed by the temperature and the corrections sh
scale away as the ratioa8/L→0. This scenario is confirmed
in Fig. 5, where data are shown atT/J50.7 for L
58, 16, 32, and 64 and are compared with the theoret
curve. Deviations from the theoretical result are observed
L58 and L516 but the PDF clearly approaches the p
dicted scale independence for the larger system sizes.

NearTKTB , vortices influence the PDF, however the vo
tex population decreases exponentially moving away fr
TKTB @42# and they only make their presence felt within t
physical domain in a small band of temperatures near
transition. In this regime, the data do not fit on the univer
curve @14,43,45#, but a detailed discussion of this point
outside the scope of this paper.

C. P„m… for the linearized order parameter

As Eq. ~22! is independent of temperature, one should
able to obtain it at low temperature where the magnetiza
is approximately

m512
1

2N (
i

~u i2 ū !2. ~24!

In fact, using this expression one can arrive at Eq.~22! in a
more straightforward manner. What is perhaps surprisin
that the calculation, using Eq.~24!, is valid for all tempera-

FIG. 5. The PDF, as obtained from a fast Fourier transfo
~FFT! of Eq. ~22!, in dimensionD52 compared with MD results
for a system of sizeN582, 162, 322, 642 at temperatureT.0.7.
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tures belowTKTB , even for temperatures where Eqs.~6! and
~24! represent different physical quantities.

Using the Hamiltonian~7!, we have

P~m!5
1

ZE2`

` dx

2pE )
i

du i expH ixFm211
1

2N (
i

u i
2G

2
1

2t (
i , j

u iGi j
21u j J ,

whereGi j
21 is the inverse Green’s-function operator conne

ing sites i and j with nonzero elements fori and j nearest
neighbors@16#, andZ5(detG21/2pt) is the partition func-
tion.

It is easy to integrate the Gaussian integral by transfo
ing into reciprocal space. Defining the trace Tr of any fun
tion of G as the sum forqÞ0 of the same function ofG(q)
and usinĝ m&512t Tr G/2N, we find

P~m!5E
2`

` dx

2p
expF ix~m2^m&!2 ix

t

2
Tr G/N

2 1
2 Tr ln~12 ixtG/N!G . ~25!

We can now use the fact thats5Ag2/2t in this approxima-
tion, to transform Eq.~25! into a dimensionless and univers
form,

P~u!5E
2`

` Ag2

2

dx

2p
expF ixuAg2

2
2 i

x

2
Tr G/N

2
1

2
Tr ln~12 ixG/N!G

5E
2`

` Ag2

2

dx

2p
exp@ iF~x!#, ~26!

which is the same expression as Eqs.~20! and~22!, once we
separate the real and imaginary parts of the integrand. T
demonstration proves that the only relevant graphs are th
with only one loop, the others being zero in the thermod
namic limit.

Within this linear approximation, the mean magnetizati
^m& and the standard deviations do not scale in the sam
way with system size: whilê m&512(T/8pJ)ln(CN), s
5Ag2/2t is a temperature-dependent constant. This exac
sult can be verified by applying Eq.~9! to Eq. ~25! and
calculating^m& and^m2& directly. The fact that we find the
same universal function for the two calculations, when w
ten in the form~2!, shows explicitly that the hyperscalin
result s/^m&;O(1) is not a necessary condition for non
Gaussian data collapse. Rather, it seems that hyperscali
a consequence, in these circumstances, of the correct de
tion of m as an order parameter on the interval@0,1#.

The Gaussian limit of the 2DXY model is identical to the
Edwards-Wilkinson~EW! model of interface growth and th
linear approximation for the order parameter is related to
6-8
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square of the interface widthm512w2. The PDF forw2

has been studied in one@28# and two @24# dimensions to-
gether with extensions to the EW model, including nonl
earity @46,47#. All models give non-Gaussian PDF’s with th
same qualitative features as Fig. 2. These models provid
important microscopic link between equilibrium and no
equilibrium systems and suggest that a formalism could e
that incorporates the statistical features that we have
served to be shared, at a global level, between such diffe
systems.

D. Asymptotes ofP„u… for large fluctuations

As a first step towards an analytic form forP(u), one can
approximate Eq.~22! beyond the Gaussian approximation
retaining only the elements (g2 ,g3). In this case, the solu
tion is proportional to the Airy function

P~u!}expS 2
1

6a
u DAiF 1

~3a!1/312a
2

1

~3a!1/3
uG ,

~27!

wherea523/2g3/3g2
3/2.0.296 876. Theg3 term assures tha

it is not symmetric on reversing the sign ofu. We find that
the approximation reproduces qualitatively the apparent
ponential behavior foru!21:

P~u!;H 2ApF 1

~3a!1/312a
2

1

~3a!1/3
uG 1/4J 21

3expH 2
1

6a
u2

2

3 F 1

~3a!1/312a
2

1

~3a!1/3
uG 3/2J .

~28!

However, the approximation does not allow us to extract
asymptote above the mean, as foru.0 the Airy function
develops oscillations.

A more fruitful approach is to look at the saddle points
the integrand~22!, from which one can extract both asym
totes. Ifu!21, an expansion nearx50 is not very satisfac-
tory and we must rather seek the solution for the extrema
the whole integrand,]F(x)/]x50. We find

Ag2

2
u5 1

2 Tr
G3

N3

x2

11x2G2/N2
2

i

2
Tr

G2

N2

x

11x2G2/N2
.

~29!

If u is negative andx real, the real part of the second term
always positive and there is no solution to this equation.
therefore seek a solution forx pure complex,x5 iy . In this
case, Eq.~29! becomes

Ag2

2
u5 1

2 Tr
G2

N2

y

11yG/N
5w~y!. ~30!

The function w has simple poles aty524p2,28p2,
232p2, . . . and its asymptotic value near the first poley0
524p2 is w(y);22/(y2y0). The extremum of the inte
04110
-

an

st
b-
nt

x-

e

f

of

e

grand satisfies the conditiony* .y022A2/g2/u.y0 for uuu
large and we can deform the real path of the integration
that it passes through the extremum on the imaginary a
Near the extremum, we can expand the integrand up to
ond order iny2y* and perform a Gaussian integration:

P~u!.E
2`

` Ag2

2

dx

2p
exp@ iF~ iy* !

1 i 1
2 ~x2 iy* !2F9~ iy* !#. ~31!

We finally find that the asymptotic value of the distributio
varies as

P~u!}uuuexpS 4p2Ag2

2
u D . ~32!

We have superimposed the asymptotic result~32! and the
full numerical integration forN51012 of Eq. ~22! in Fig. 6.
The amplitude of Eq.~32! is chosen so that the curves a
slightly displaced to allow comparison of the slopes. T
asymptotic solution is in excellent agreement even foru val-
ues where the PDF shows a distinct deviation away fr
exponential behavior and only fails foru.22. Further out
in the tail, in the range210,u,24, ln(P) is approxi-
mately linear. However, the value of the slope is not t
argument of the exponential in Eq.~32!, 4p2Ag2/2.1.736.
The logarithmic corrections given by the termuuu are signifi-
cant over the whole of this range, but the curvature is
small that the data can be fitted to an effective exponen
P(u);exp(au), with a51.568 67 . . . . Thedata only ap-
proach true exponential behavior foru,230, which is com-
pletely outside any imaginable physical range. Stric
speaking, it is therefore more correct to speak of pseudo
ponential,x exp(ax), for the asymptote below the mean.

For large and positiveu, a solution of Eq.~30! exists for
large and positivey. A reasonable approximation is to re
placeG by 1/q2 and perform the integration

FIG. 6. Comparison of the tail of the PDF with the exact asym
tote ~long dashed!, Eq. ~32!, the true exponential tail of slope
4p2Ag2/2.1.736 ~dotted!, and an effective exponential tail o
slope a51.568 67 . . . ~short dashed!. The curves are displace
from each other for clarity.
6-9
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w~y!;
1

2Eq52p/AN

2p Nd2q

4p2

1

N2q4

y

11y/Nq2

;
1

4pE2p/Ay

` dq

q~11q2!
;

1

8p
ln y. ~33!

A more precise computation givesw5 ln(y)/8p1â11/2y

1•••, whereâ is a numerical constant that can be compu
exactly. An analytical study~see Appendix C! gives

â5
1

24
1

g

4p
2

1

4p
ln~4p!2

1

2p
ln)

k51

`

@12exp~22pk!#

520.113 514 443 37 . . . . ~34!

For largeu, the saddle point of the integrand is therefo
located aty* 5exp 8p„2â1A(g2/2)u…, and the asymptotic
value forP follows from a Gaussian integration of Eq.~31!:

P~u!}expF2
1

8p
e8p„A(g2/2)u2â…18pAg2

2
uG . ~35!

Comparing the asymptote with the full curve, we again fi
that the true asymptote only fits accurately outside the ph
cal domain, although the data are clearly consistent wit
very rapid fall off in the PDF foru above the mean.

III. FITTING TO KNOWN FUNCTIONAL FORMS

The obvious question now arises: is the PDF generate
the characteristic function~22! of known functional form?
We do not have a definitive answer to this question, as
are not able to transform Eq.~22! analytically. In the absence
of an answer, we test the PDF against three skewed fu
tions, shown in Eq.~4!, which describe statistics in differen
physical situations. These are a modified Gumbel funct
characteristic of problems where extreme values domin
the sum over many contributions; a log-normal distributio
characteristic of statistically independent multiplicative p
cesses; and ax2 distribution that describes the PDF of
quantity made up of a finite number of positive-definite m
croscopic variables. The analysis is the same in all th
cases, but is only shown in detail for the modified Gum
function: each curve has four parameters, but once the v
of the first is chosen, the others are fixed by normalizat
and the constraintŝu&50, ^u2&51. The family of one-
parameter curves are Fourier-transformed and the first
terms in a Taylor expansion are set equal to those for
generating function, which fixes the value of the free para
eter. The method takes into account the skewness of
curve but not the kurtosis, and its accuracy is ultimately li
ited. The goodness of fit can be measured by comparing
ratio of higher-order terms of the expansion of the test a
generating functions. For an exact solution, all higher ra
would be equal to unity, while for a poor fit they diverg
rapidly from this value. Other functions could be tested
the same way and an exact solution, unknown to us, m
well exist in the statistics literature.
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The method described above is quite similar to that due
Pearson@48#, who realized a century ago that, in many pra
tical situations, knowledge of the first four moments of
distribution is sufficient to generate a curve, fitting any set
data points@51#. Pearson developed a phenomenological d
ferential equation containing the numerical values of the m
ments, whose solution gives the fitting function. A Pears
analysis is performed on the calculated PDF at the end of
section.

A. The generalized Gumbel distribution

The asymptotes~32! and ~35! are of the same genera
form as those for Gumbel’s first asymptote distribution fro
the theory of extremal statistics@32#: definingz to be theath
largest value from a set ofzi , i 51,N random numbers taken
from a generatorf (z), the PDF forz is

ga~z!5
aaaa

G~a!
exp$2a@aa~z2ua!1e2aa(z2ua)#%. ~36!

G(a) is the gamma function;ua is the value ofz such thata
of the N random numbers are greater thanz. F(z) is the
probability of havinga of the values less thanz, such that
F(ua)512a/N. aa is referred to as the intensity:aa
5(N/a) f (ua). In conventional statistics,a would of course
be an integer. However, in what follows we are going to s
an irrational number appearing.

The function~36! has an exponential tail for fluctuation
towards large values ofz, the opposite of the PDF, in Fig. 2
We therefore make a change of variablesmz512z, uz
5(mz2^mz&)/sz , which makes a mirror reflection of Eq
~36!. Within the linear approximation for the order param
eter, this corresponds to the relevant variable being the
of the spin-wave amplitudesz→(1/2N)( i(u i2 ū)2 @21,50#.
Changing variables, we find

szPG~uz!5weab(uz2s)2aeb(uz2s)
,

b5aasz ,
~37!

s5~12^mz&2ua!/sz ,

w5
aaaa

G~a!
sz .

Equation ~37! is also the distribution for theath smallest
random number from the setzi . After some algebra, one ca
show that

b5A 1

G~a!

]2G~a!

]a2 2F 1

G~a!

]G~a!

]a G2

,

~38!

s5
1

b F ln~a!2
1

G~a!

]G~a!

]a G .
Now rewriting Eqs.~32! and ~35!, one finds
6-10
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P~u!}5 uuuexpS p

2
bu D , u!0

expS 2
p

2
eb(u2s)1cu D , u@0,

~39!

with b58pAg2/2.1.105,s50.745, andc5b. These as-
ymptotes differ only slightly from those for a generalize
Gumbel function witha5p/2, first through the termuuu for
fluctuations below the mean and second through the t
exp(cu) above the mean: the coefficientc5(p/2)b for the
modified Gumbel function, whilec5b for the true asymp-
tote. These differences are enough to ensure that the m
fied Gumbel equation is not an exact solution to Eq.~20!,
however the comparison is so close that it is tempting to
to get a good fit to Eq.~22! by solving for the constants
a, b, s, andw.

Fourier transforming Eq.~37! gives

PG~u!5E
2`

` dx

2p

w

b
expS ixu2 isx1 i

x

b
ln a2a ln aD

3GS a2 i
x

bD
5E

2`

` dx

2p
exp@ iFG~x!#. ~40!

We can compareFG(x) with F(xA2/g2), assuming that the
two Fourier transforms are nearly equal. The four consta
should be calculated by minimizing the difference betwe
the two functions. To do this, we can set the first four co
ficients of the Taylor expansion of these functions equal.
FG(x), we have

FG~x!5 ia ln a2 i ln~w/b!2 i ln G~a!

1@2s2C~a!/b1 ln~a!/b#x1
i

2b2
C8~a!x2

1
1

6b3
C9~a!x32

i

24b4
C-~a!x4

2
1

120b5
C (4)~a!x51•••, ~41!

whereC(z) is the digamma functionG8(z)/G(z). For F,
we have

F~xA2/g2!5
i

2
x22

A2g3

3g2
3/2

x32 i
g4

2g2
2

x41
2A2g5

5g2
5/2

x51•••.

~42!

We therefore find that the four constants satisfy the relati

b

w
5

G~a!

aa
, sb5 ln a2C~a!,
~43!
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b25C8~a!, b3g3S 2

g2
D 3/2

52C9~a!.

The first three equations arise from the constraints of norm
ization of the distribution, while the last expresses these c
straints in terms ofg2 andg3 . The equations can be solve
numerically. We find

a51.580 680 1, b50.933 935 5,
~44!

s50.373 179 2, w52.160 285 8.

The constantsb and s calculated in this way are shifte
slightly from the values extracted from the asymptotes, bua
is close to our very appealing first try,p/2. Taking this value
and calculating the constantsb, s, and w from normaliza-
tion, one finds

a5p/2, b50.938,
~45!

s50.374, w52.14,

in very satisfying agreement with the first method of calc
lation.

Given this solution, we can compute the coefficient ra
for the higher-order terms in Eqs.~41! and ~42!:

1

FG
(4)~0!

]4F~xA2/g2!

]x4 U
x50

5
12g4b4

g2
2C-~a!

50.926 502 9,

~46!

1

FG
(5)~0!

]5F~xA2/g2!

]x5 U
x50

52
48A2g5b5

g2
5/2C (4)~a!

50.826 742 9.

~47!

The ratio of coefficients clearly diverges from unity, but
does so slowly, indicating that the modified Gumbel functi
should be a good fit to the curve over the physical ran
This is confirmed in Fig. 7, where we compare Eq.~37!,
using the values~44!, with the exact result, from Eq.~22!.
On a natural scale, the agreement is remarkably good o
the entire range, with the only visible deviation comin
around the maximum of the PDF, where the Gumbel curv
very slightly lower. On a logarithmic scale there is excelle
general agreement over the whole of the plotted range, b
slight deviation can be observed for probabilities belo
1023. For fluctuations below the mean, the deviation is b
cause the true asymptotic behavior is quasiexponen
x exp(2ax), and has a slight curvature, as discussed in
preceding section. The results therefore confirm that,
though the generalized Gumbel function is an excellent
proximation for the PDF~22!, it is not an exact solution.

From these results it is very tempting to take the gene
ized Gumbel function, witha exactlyp/2 as a working ana-
lytic expression for the PDF. However the connection w
extremal statistics remains an open question@34#. As dis-
cussed in Sec. V, the spin-wave Hamiltonian~7! is diagonal-
ized in reciprocal space and the problem can be formula
in terms of a set of statistically independent variables. T
6-11
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PDF for extreme values of statistically independent variab
can only follow three different asymptotic@32,40# or limit
functions as the thermodynamic limit is taken. The only p
sible limit functions from extremal statistics of the Gumb
form discussed here are fora integer, with a51 for the
biggest or smallest values.

Chapmanet al. @34# have recently argued that the PDF f
global quantities in any system with identifiable excitatio
on scales up to the system size should be dominated by
treme values. They showed that the PDF of extreme va
among 105 Gaussian random number generators appro
mates to a Gumbel function witha5p/2. This is not one of
the predicted asymptotes@40#, and we suggest that the devi
tion must be due to a very slow approach to the limit fun
tion with system size. It therefore does not seem to b
correct description of the 2DXY data as we do have a lim
function that is well represented by Eq.~37! with a5p/2.
However, if the results of@34# are relevant for nonequilib
rium phenomena such as turbulence and self-organized
cality, it would suggest the interesting property that corr
tions to the asymptotic forms, or limit functions, are
generic feature of these systems.

B. Generalized log-normal distribution

The generalized log-normal distribution has the form

PL~u!5
w

A2psL
2~s2u!

expH 2
1

2sL
2 @ ln~s2u!2a#2J ,

~48!

FIG. 7. The PDF compared with the generalized Gumbel, l
normal, andx2 functions described in the text.
04110
s

-
l

x-
es
i-

-
a

iti-
-

with w51. Following the same procedure as before, the g
erating functionFL(x) can be developed as a power serie

FL~x!5x~u2s1ea1sL
2/2!1 i

x2

2
~e2a12sL

2
2e2a1sL

2
!

2x3~ 1
6 e3a19sL

2/21 1
3 e3a13sL

2/22 1
2 e3a15sL

2/2!.

~49!

Comparing Eq.~49! with Eq. ~42!, one finds the following
expressions fors, a, andsL :

s5ea1sL
2/2,

a52 1
2 ln~e2sL

2
2esL

2
!, ~50!

A2

3

g3

g2
3/2

5 1
6 e3a~e9sL

2/212e3sL
2/223e5sL

2/2!.

Eliminatinga andsL leads to a cubic equation fors in terms
of a5(g2/2)3/2/g351/ugu:

s323as22a50, ~51!

which could be solved exactly. We have solved it nume
cally, verifying that there exists one real and two compl
roots. We find

s53.459 81, a51.201 09, sL50.283 25.

The function, with these parameters, is compared with
calculated PDF in Fig. 7. The general quality of fit is aga
excellent over the plotted range, with very small systema
deviations occurring in the wings of the distribution. It do
not have the correct asymptotes, either exponential on
left or double exponential on the right, but as we have sho
in the preceding section, the true asymptotic behavior is o
reached outside the plotted regime, which explains why s
a good fit can be achieved.

We have not, for the moment, been able to develop
physical reasoning associated with the log-normal funct
and the origin,s53.4, although related tog, seems rather
arbitrary, but we do not exclude an explanation in terms
random multiplicative processes. Note that log-normal dis
bution does appear in surface dynamics. Namely, star
with a flat interface as an initial condition, the short-tim
limit of the D51 Edwards-Wilkinson dynamics yields a log
normal distribution for the interface width@66#.

C. Generalizedx2 distribution

Thex2 distribution forn statistically independent degree
of freedom has the form

Px~u!5w~s2u!n/221e2a(s2u), ~52!

with

-

6-12
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w5
an/2

G~n/2!
,

~53!
n52a2.

As in the case of the Gumbel function, the generating fu
tion can be found in closed form:

Fx~x!5x~u2s!1 i
n

2
ln~12 ix/a!, ~54!

whose development up to fourth order inx leads to

Fx~x!5x~u2s!1
n

2a
x1 i

n

4a2
x22

n

6a3
x32 i

n

8a4
x4

1O~x5!1••• . ~55!

This series can again can be compared with Eq.~42! to give

s5
n

2a
,

a5An

2
5s, ~56!

n5
g2

3

g3
2

5
8

g2
,

with numerical values

n510.071 55, a52.244 05, s5a, w52.312 33.

Comparing the function shown in Fig. 7 with these para
eters with the calculated curve, there is reasonably g
agreement but this time deviation can be seen when plo
both on a real and a logarithmic scale. On the logarithm
scale, the deviation is stronger than for the other fitting fu
tions.

One can see that describing the correlated system
finite number of degrees of freedom is a reasonably g
approximation. It is an appealing concept and the calcula
yields a system-size-independent number that depe
uniquely on the skewness:n5g2

3/g3
258/g2. If g developed

towards zero, thenn would diverge and thex2 interpretation
would be consistent with a Gaussian distribution. Howev
quantitatively it is not correct and the true description is
many-body one@52#. The difference between the two curve
can be quantified by considering the ratio of the fourth-or
terms:

Fx~x!(4)52 i
1

2n
,

~57!

F~x!(4)52 i
g4

2g2
,

so thatF(x)(4)/Fx(x)(4);0.0238, which is very far from 1
04110
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n
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D. Pearson’s curve

Pearson@48,49# described an ingenious method of deri
ing a functional form for a PDF to fit experimental dat
given the first four moments of the latter. He considered
differential equation

d ln y

dx
52

x1b

b01b1x1bx2
~58!

and showed that ify is a distribution, then the paramete
b,b0 ,b1 are specific functions of the first four moments. T
expression can then be integrated to give~within a normal-
ization factor! an approximate functional form for the PDF
which by definition has the same principal moments as
data to be fitted. The success of Pearson’s approach relie
the observation that PDFs with the same moments are
proximately coincident over the range of a few standard
viations, which is exactly the range of experimental intere
In the present case, the mean is zero and the standard d
tion is set to unity, so the shape of the curve depends only
the skewness,g, and kurtosis,k.

We find g5g3(2/g2)3/2520.8907 and k53
13g4(2/g2)254.415, which gives the following solution:

y5y0

~b2j!q

~a2j!p
~59!

in which j5x20.397 23,b52.4787,a511.430,q
510.249,p547.267, andy05exp(105.02). Equatingy(x)
5P(u), the fit to the exact expression~Fig. 8! is good be-
tweenx526 andx52, but the very large numbers involve
in Eq. ~59! suggest that this functional form has no physic
significance. From this analysis we can conclude that d
collapse observed in Ref.@21# should be interpreted as mea
ing that the third and fourth moments scale withs andL in
the same way as they do in the critical 2DXY model.

IV. DISTRIBUTION IN THE D-DIMENSIONAL GAUSSIAN
MODEL

In this section, we study the asymptotics of the distrib
tion function in general dimensionD. It is straightforward to

FIG. 8. The PDF compared with the fit obtained with the Pe
son method described in the text.
6-13
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generalize the development from Eq.~20! to Eq. ~22! for
arbitrary dimension by redefiningG(q) for dimensionD and
summing over aD-dimensional Brillouin zone. The genera
ized expression~22! can then be numerically transformed
give P(u). The results forD53 and D51 are shown in
Figs. 9 and 10, where they are compared with data fr
Monte Carlo and molecular-dynamics simulations. There
again excellent agreement showing that Eq.~22! is essen-
tially exact in the low-temperature regime, where the Ham
tonian ~7! is valid. At higher temperatures, the full Hami
tonian ~5! generates vortex structures, Eq.~13! is no longer
valid, and the derivation of Eq.~22! breaks down. Within the
low-temperature approximation, there are three regimesD
,2, 2,D,4, andD>4, in addition to the special caseD
52. The different regimes can be seen from a dimensio
analysis ofg1 andg2 . As deviation from Gaussian behavio
is due to the abnormal influence of the integral scale in
form of infrared divergences, we can replaceG by 1/q2 and
recalculate thegk by performing integrals over the Brillouin
zone between 2p/N1/D and 2p. This procedure gives the
correct qualitative behavior, but there is a difference betw

FIG. 9. The PDF in three dimensions forN583 and T/J
51.82. The dashed line~with slope .2.5) is the exponentia
asymptote given by Eq.~75! and is shifted with respect to the ma
curve for clarity.

FIG. 10. The PDF in one dimension (N5128) at temperature
T/J,12/N. The dashed line~with slope.1.04) is the exponentia
asymptote for the low-temperature approximation given by Eq.~65!
and is shifted with respect to the main curve for clarity.
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the discrete sums and the integrals over the Brillouin zo
even in the thermodynamic limit~see Appendix C!. The cor-
rect qualitative behavior is

g1.5
C1,DN(22D)/D, D,2

A1 ln N1B1 , D52

C1,D , D.2

~60!

and

g2.5
C2,DN2(22D)/D, D,4

~A2 ln N1B2!/N, D54

C2,D /N, D.4.

~61!

The lower and upper critical dimensions,D52 andD54,
are marked by the logarithmic divergence ofg1 and g2 ,
respectively.

Using the linearized order parameter~24!, we find for D
,2 that g1 diverges as a power ofN giving ^m&51
2tC1,DN(22D)/D, which is a poor approximation for a ther
modynamic quantity bounded on the interval@0,1#. Once
outside this restricted low-temperature region,t
<1/@C1,DN(22D)/D#, both the linear approximation for th
order parameter and the quadratic approximation for
Hamiltonian break down and there is a divergence in
behavior of the PDF, as calculated from Eq.~22! and as
simulated numerically. The system is, of course, disorde
at all temperatures, so that the correct^m& ands both vary
as 1/AN and the PDF for the vector order parameter is
two-dimensional Gaussian function centered onm50. The
PDF for m, as defined in Eq. ~6!, is P(m)
;m exp(2m2/2s2), analogous to a Maxwellian distributio
of molecular speeds, and the thermodynamic system sati
the central-limit theorem~see Appendix A!. Results of nu-
merical simulation are shown in Fig. 11. As we have alrea
seen, forD52 the situation is different, as there is a larg
region of temperature where the quadratic Hamiltonian c
rectly describes the physics even though Eq.~24! is not a
good approximation. In this regime of temperature, the PD
P(u), for parameters~24! and ~6! are, however, identical.

For dimensionD.2, the low-temperature expansion fo
the order parameter gives consistent results for allN, as long-
range order is stable and̂m&;12C1,Dt is well defined.
Above D54, our results agree with mean-field theory (D
5`) where all sites are connected. Here,^m&.12t/4 and
s.t/2A2N, and for large but finiteN, the universal function
P is simply a Gaussian,

P~u!5
1

A2p
exp~2 1

2 u2!, ~62!

which corresponds to the central-limit theorem for a colle
tion of N independent oscillators, each of expectation va
^m& and standard deviationt/2A2N.
6-14
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A. Low-temperature calculation in DÄ1

If the low-temperature calculation forD,2 is not terribly
pertinent for the thermodynamic system, it highly releva
for the interface problem in the context of the EW mod
@24,28,29# and is exactly solvable inD51 @28#. In this case,
computing the differentgk , we find

g15N/12, g25N2/720, . . . , gp5
2z~2p!

~2p!2p
Np, p@1,

wherez(k)5( i 51
` i 2k is the Riemann zeta function@65#. The

expectation value of the magnetization and standard de
tion are

^m&5expS 2
tN

24D.12
tN

24
,

s25S 1

N (
r

coshtGR~r !21D ^m&2

5S E
0

1

coshtN~x22x11/6!dx21D ^m&2;t2N2,

which means that the ratiôm&/s scales as 1/N, although for
the parameters of the interface problem^w2&/sw2;O(1).
We evaluate the universal distributionP, using the genera
Eq. ~26! with G defined for theD51. After some algebra
we find for P(u)

P~u!5E dx

2p
expF ixS u2

A360

12
D 2 (

k51

`

lnS 12
ixA360

2p2k2 D G
5E dx

2p
expF ixS u2

A360

12
D 2 lnS sinAixA360/2

AixA360/2
D G

5E dx

2p
exp@ iF~x!#. ~63!

This expression is related directly to the functionF̃ of Eq.

~11! in Ref. @28#: P(u)5F̃(2224u/A360). The method
used in@24,28,29# is based on path integration, but the r
sults are the same as our saddle-point method, used to
pute the asymptotics. Settingx5 iy , the extrema ofF satisfy
the equation

u2
A360

12
52

A360

2p2 (
k51

` 1

k21yA360/2p2

52
A360

2p2 S 2
1

2yA360/2p2

1
p

2AyA360/2p2
cothpAyA360/2p2D .

~64!
04110
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For u!21, y is close to the first pole22p2/A360 of the
right-hand side of Eq.~64!, which is similar to the 2D case
~30! except that the 1D extrema function is easier to eva
ate. Performing the saddle-point computation, we find thaP
behaves asymptotically as

P~u!}exp@2p2u/A360#, ~65!

which is the same as@28#. The asymptote~65! is drawn on
Fig. 10 where it can be compared with the full calculati
and with simulation. The exponential tail is extremely we
defined and the predicted slope is clearly correct.

In the regime of fluctuations above the mean, fory
@1, u is close to the constantA360/12, and no extrema exis
for u beyond this value. In this case,y.A360/@8(A360/12
2u)2#, and the saddle-point approximation leads to the f
lowing asymptotic value forP near this upper limit:

P~u!}~A360/122u!25/2exp„2 1
8 A360/~A360/122u!…,

~66!

which is the same result as@28#. We refer the reader to Refs
@24,28,29# for the precise coefficients in both asymptot
limits.

In conclusion, we find that foru!21, the universal dis-
tribution again has an exponential tail, while for fluctuatio
above the mean the PDF shoots to zero
exp@23u0/2(u2u0)#, with u05A360/12. This upper limit
corresponds to the constraint thatm<1.

It is worth pointing out in some detail here that the exp
nential tail in the one-dimensional problem is not the res
of critical fluctuations. The small deviations in angle (u i

2u j ) constitute a random walk withw;A12m being the
radius of gyration, which scales correctly as the square r
of the walk length,L. The 1D linear order parameter or in
terface problem is therefore nothing more than a simple r
dom walk@28#, but despite this the PDF, as shown in Fig. 1
is as follows: a standard result for such a walk is that
mean radius of gyration is proportional to the mean end
end distance,S, of the walk. It is easily shown that the PD
P(S) is Gaussian@30#. Changing the variable fromS to X
5S2, one findsP(X);X21/2exp(2X/X0), a trivial distribu-
tion with an exponential tail. The PDF forw2 has the same
exponential tail, but does not show the essential singula
at w250 (m51), thus we conclude that a rather surprisi
property of a random walk is that the PDFs for the radius
gyration and for the end-to-end distance are not the sa
The origin of this difference is that the average angleū,
corresponding to the center of mass of an equivalent rand
walk, fluctuates withL in the same way as the radius o
gyration itself, and this lack of self-averaging removes t
essential singularity from the PDF atw250.

B. Asymptotic solutions in general dimension

We first evaluate the asymptotic value ofP for positiveu
by solving the saddle point of Eq.~26!, rescaling the variable
6-15
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xAg2/2→x for convenience. ForD,2, the ratiog1 /Ag2 is
independent of the system size and, withx5 iy , the equation
to solve is

u2
g1

A2g2

}2E
cst/N1/D

cst NqD21

q2N1yA2/g2

dq, ~67!

where cst is a constant. By settingN1/Dq/Ay→q, we find
that, for large and positivey,

g1

A2g2

2u}y(D22)/2E
cst/Ay

cstN1/D/Ay qD21

11q2
dq

;y(D22)/2E
0

` qD21

11q2
dq, ~68!

which means thatu is close to the upper boundg1 /A2g2.
Replacing the asymptotic value ofy for the extrema in the
function F ~26!, we find that

ln P~u!;2cstS g1

A2g2

2u D D/(D22)

1 logarithmic corrections,

u;
g1

A2g2

, D,2. ~69!

The logarithmic corrections come partly from the Gauss
integration around the saddle point and partly from ot
terms in Eq.~68! that are not accurately evaluated within o
approximation. Note again thatD52 is a special case as
instead of Eq.~68!, we have a logarithmic divergence@see
Eq. ~33!# and subsequently a double exponential fall inP for
largeu. For the interval 2,D,4, the ratiog1 /Ag2 and the
integral ~68! are no longer finite and so we look to Eq.~30!
for the asymptotic behavior:

u}
1

g2
E

cst/N1/D

cst dDq

Nq4

y

11yA2/~Ag2Nq2!
. ~70!

By again settingN1/Dq/Ay→q and using the fact tha
g2N2(D22)/D is finite ~60!, we arrive at

u}y(D22)/2E
0

` qD23dq

11q2
, y@1. ~71!

The integral is convergent for 2,D,4, and by replacing the
value for y in the saddle-point approximation, we get th
asymptotic form forP, in the limit of large and positiveu,

ln P~u!;2cstuD/(D22)1 logarithmic corrections,

u@1, 2,D,4. ~72!

In three dimensions, we therefore expect that the logari
of the distribution falls off likeu3, well above the mean. We
have not tested this in detail, but the PDF does fall off m
04110
n
r

m

e

slowly for D53 thanD52, in qualitative agreement with
the predictions here. Finally, we note that throughout
range 2,D,4, the universal PDF is non-Gaussian, but t
hyperscaling relation is invalid: ^m&/s;g1 /Ag2
;N(D22)/D.

For D.4, g2 decreases as 1/N, consequently Eq.~71! has
to be modified. We find, instead of Eq.~71!, that

u}y(D22)/2N(42D)/4E
N(D24)/4D/Ay

N1/4/Ay qD23dq

11q2
;y, N@1.

~73!

We can, in fact, replace the integrand inside the integral
qD25dq since the integration domain is large, from whic
we find that the saddle point is proportional tou@1 and
deduce thatP is Gaussian on the right-hand side of th
curve. The same is true forD54 despite the logarithmic
divergence ofg2 .

In the opposite limitu!21, for bothD51 andD52 the
asymptotic value of the distribution falls down exponentia
@Eqs. ~32! and ~65!#. We would now like to evaluate this
limit in general dimensions. In both cases, the coefficient
u is related to the value ofg2 , i.e.,C2,D . Rewriting Eq.~30!
with discrete sums~see also Appendix C!, we have

u5
N2(22D)/D

16p4g2
(

mi>0
8

1

~m1
21•••1mD

2 !

3
y

~m1
21•••1mD

2 !1yA2/g2N(22D)/D/4p2
, ~74!

where the sum excludesmi50, i 51, . . . ,D. The saddle-
point equation has a solutiony that is the pole nearest th
origin, y524p2Ag2/2N(D22)/D, i.e., for sets of$mi% with
one element equal to 1, the others being zero. ForD,4 and
largeN, this pole is finite sinceg2 compensatesN2(D22)/D,
so that its value is simplyy524p2AC2,D/2. Applying the
saddle-point integration, we find that the dominant term
the logarithm ofP is, below the mean,

ln P~u!;4p2AC2,D

2
u, u!21, D,4, ~75!

and is linear inu for every dimension below 4. Included i
Fig. 11 for D53 is a fit, on the left-hand side of the form
~75!, with C2,3 calculated numerically. There is again exce
lent agreement, which convincingly confirms the presence
the exponential tail. In fact, true exponential behavior
reached for smaller values ofu than forD52.

For D.4, the value of this pole diverges likeN(D24)/2D,
and the previous solution fails. In fact, the solution~73! for
positive u and y is also valid for negative values i
qD21dq/(q211) is replaced byqD21dq/(q221). Since the
integration domain is far from the pole of the denominat
we can approximate the integrand in both cases byqD25dq,
and we get the same result as Eq.~73!. We therefore finally
conclude thatP is also Gaussian on the left-hand side of t
curve and the central-limit theorem applies forD.4.
6-16
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V. CONCLUSION

Probability functions with exponential rather than Gau
ian behavior are a common feature of complex syste
@33,46,47,53–55#. For example, the PDFs for velocity differ
ences at microscopic scales in fully developed turbule
show exponential tails@53#. This appears to be true in turbu
lence, not only for microscopic quantities but also for glob
quantities; the energy injected into a closed turbulent fl
being a very well controlled and documented exam
@10,13,56#. Following these observations, we have propos
that this is also a generic feature of complex systems@11,21#.
In this paper we have shown that, for the low-temperat
phase of theXY model, a critical system at equilibrium
analogous behavior occurs when a few long-wavelength
large-amplitude modes make their presence felt in the glo
measure, which is typically a sum overO(N) degrees of
freedom. The exponential tail can occur in three physica
different situations. The first is in two dimensions, when t
system is critical and fluctuations occur over all leng
scales. The second is in one dimension, when the syste
not critical, but an exponential tail occurs for a particu
global measure, relevant to problems of interface grow
whose moments are completely dominated by the inte
scale. The third is in three dimensions, also noncritic
where despite stable long-range order, the large-amplit
long-wavelength modes continue to make their presence
The detailed form of the PDF in these three cases is q
different and easily discernible in experiment. In Table I w
show the evolution of the skewness and the kurtosis w
spatial dimension. The deviations from the Gaussian li
are largest in one dimension, and decrease continuall

FIG. 11. The PDF in one dimension (N5128) at temperature
T/J.12/N. The continuous line is Maxwell speeds distribution
an ideal gas.

TABLE I. Variation of skewnessg and kurtosisk with dimen-
sion D.

D g k

1 21.807 8.14
2 20.891 4.41
3 20.354 3.31
4 0 3.0
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zero atD54. We propose that the difference in the form
the PDF could be used as an experimental signature of
underlying physics.

From the general evolution shown in Table I, one mig
expect a dependence on shape, with dimensional cross
as the length scale in one direction changes from mic
scopic to macroscopic. This is indeed the case, and for
ample in two dimensions, the skewness and kurtosis of
PDF calculated from Eq.~22! increase towards the values fo
D51 if the ratio of lengths in thex andy directions,Lx and
Ly , is varied continuously from unity. It would be extreme
interesting to establish if the same is true when the len
scales are varied in turbulence experiments and numeric
in the models of self-organized criticality.

To see how the anisotropy of the PDF comes from
long-wavelength excitations, we give an analysis in recip
cal space: the Hamiltonian~7! is diagonalized,

H5
J

2 (
q.0

G~q!21 Re$fq%
2, ~76!

wherefq is the discrete Fourier transform ofu i and the sum
is over the Brillouin zone@57#, with the thermodynamic vari-
able for eachq taken as the real part offq . Defining mq
5(1/2N)Re$fq%

2 the linear order parameter can be writte
m512(qmq , where themq are statistically independen
variables with PDF,

P~mq!5AbJq2N

4p
mq

21/2e2bJNq2mq. ~77!

Here, as we are principally interested in the modes at sm
q5uqu, we have, without loss of generality, approximat
G(q)21'q2. The PDF form is thus nothing more than th
composite PDF for a set of independent spin-wave mode
an ‘‘ideal gas’’ of particles, whose only peculiarity is that th
mass term varies asq2. The Goldstone modes have wav
vectorq52p/L and hence make contributions ofO(1) to m,
while the modes on the zone edge withq5p have only
microscopic amplitude. This dispersion in amplitudes is
key to the unusual behavior forD52, as it violates one of
the conditions for the central-limit theorem to apply to a su
of statistically independent variables, namely that the in
vidual amplitudes do not differ by too much. However, it
not true that the Goldstone modes, by themselv
give the complete PDF. The mean valuê(qmq&
;*2p/L

p q22n(q)dq, where n(q);qD21 is the density of
states. ForD52, both limits of the integral are required an
a detailed calculation giveŝ(qmq&5(h/4)ln(CN), with C
51.87 and with critical exponenth5T/2pJ. The anomalous
term lnN therefore reflects the fact that modes from all ov
the Brillouin zone are relevant for^m& and through Eq.~18!
for the higher momentŝmp&.

For D51, only the lower limit of integration is required
the upper limit can be set tò , and the constantsgp are
proportional toNp. As a result, the linear development of th
order parameter in small angles, Eq.~24!, is a very poor
approximation for the thermodynamic quantity defined
the interval@0,1#. The two expressions~6! and~24! describe
6-17
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different physical quantities. The former is directly related
the interface width in the Edwards-Wilkinson model of i
terface growth. The PDF for the full order parameter is co
sistent with an uncorrelated system, that is, a parama
with a two-dimensional order parameter. For the linear or
parameter, the PDF, shown in Fig. 10, does have an e
nential tail, but this is not the result of critical fluctuation
rather it is the property of a simple random walk. We rema
further that dependence on a macroscopic length scale
not, in itself, indicate critical behavior. Rather, critical b
havior is exemplified by the caseD52, where all length
scales are important between the microscopic and ma
scopic cutoff.

D53 represents the opposite of the one-dimensio
case:̂ m& is controlled by the upper limit of integration an
the result is unchanged by setting the lower limit to ze
However, despite long-range order being stable and the
tem not being critical in the low-temperature phase, the
ponential tail persists. This is related to temperature bein
dangerously irrelevant variable@58# near the zero-
temperature fixed point of a renormalization-group flow, b
tween the lower and the upper critical dimension. The c
stant g2 now falls to zero with system size but it does
more slowly than 1/N @see Eq.~61!#. As a result of this slow
decay, the ratiogp /g2

p/2, p.2 in Eq. ~20! is independent of
N and the distribution is non-Gaussian, despitegp and g2
both being zero in the thermodynamic limit. At low temper
ture the magnetization is finite, but the Goldstone mode
fluences the PDF sufficiently to produce an exponential t
A physical consequence of this anomaly is that the long
dinal susceptibility

x;
N

T
~^m2&2^m&2!;N(42D)/D ~78!

is weakly divergent throughout the ordered phase@14,35#.
This is true for all magnetic systems with Heisenberg orXY
symmetry. It could therefore be interesting to look for e
dence of the departure from Gaussian behavior experim
tally in a noncritical three-dimensional system. Precis
temperature control would not be required, however as
ratio s/^m& falls off as 1/N1/3, the divergence in the suscep
tibility is very weak and this phenomenon may be out
experimental reach.

Returning finally to critical systems, we have been able
exploit a system interacting via a quadratic Hamiltonian
exactly the lower critical dimension. In this particular cas
one has access to a critical point, with the fluctuatio
dominated behavior that this implies, while retaining t
benefit of Gaussian integration over phase space. As a re
all critical behavior can be calculated microscopically, wit
out the need for either the renormalization group or the s
ing hypothesis. The only price one pays for this simplicity
a critical system with a single independent exponent and
scaling relations satisfied through weak scaling only. In g
eral, we believe that the analytic results that we have
tained are useful for the understanding of finite-size sca
and for the interpretation of experimental observations fr
more complex correlated systems. The examples we h
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discussed@11,21# point towards a behavior analogous
criticality for an enclosed turbulent flow and for mode
showing self-organized criticality. However, the detail
analysis presented here leaves many open questions,
more experiment and simulation are clearly required if
generality and the limits of this proposition are to be tes
further.
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APPENDIX A

Some comments on the central-limit theorem
in critical systems

The central-limit theorem is a powerful result of probab
ity theory that provides the foundation for statistical therm
dynamics@59#. It states that the PDF of the sumZ5( i 51

N zi

of N statistically independent variateszi tends, in the limit of
largeN and for moderate values of the variateZ, to a Gauss-
ian distribution. As well as the statistical independence of
zi , another key criterion for the theorem to hold is that thezi
are individually negligible@36,60,61#. At a critical point, the
first of these criteria is violated. The 2DXY model is of
particular interest here as it is diagonalizable into statistica
independent degrees of freedom and maps directly on
problem where the second criterion is violated: the dir
space variables, that is, the spinsSi , are certainly individu-
ally negligible for large system sizeN, but are strongly cor-
related. On the other hand, when diagonalized in recipro
space, the spin-wave variables are statistically independ
but are no longer all individually negligible. In particular, th
long-wavelength modes make a significant impact on
fluctuations of the global measure, in this case the lineari
order parameter~24!. The PDF for the full and the linea
order parameters are identical, even when the quant
themselves differ, which makes it an ideal system for
practical study of the breakdown of the central-limit the
rem. A conventional critical system cannot, in general,
diagonalized in this way, as evidenced by the divergent s
cific heat.

Strictly speaking, the central-limit theorem does not ap
to the compound variateZ, but rather to the normalized
quantity (Z2^Z&)/N1/2. This normalization is essential for
reasonable PDF in the thermodynamic limit, as the stand
6-18



to
ha

ta
e

ve

ap

c
io
ni
n

m
an

io
e

an
va
s

i
in
at

ca

di

nd
s.
e
th

and
ars.

se
is
n-

a
-

an

ic
nt

t of
nd
us

n

2D

s

ed

nd

ne-
in-

MAGNETIC FLUCTUATIONS IN THE CLASSICAL XY . . . PHYSICAL REVIEW E 63 041106
deviation for fluctuations about the mean value^Z& scales
with system size in the same way. If a normalization fac
N1/21r, rÞ0, is chosen, then one obtains a distribution t
is concentrated either at zero or infinity@3#. We illustrate this
with an example from statistical thermodynamics. The to
energyE of an ideal gas ofN molecules has a PDF of th
form P(E);E3N/221 exp(2bE). It is straightforward to con-
firm that P(E) tends to ad function in the thermodynamic
limit, while P(E/N1/2) tends to a Gaussian function@62#.
One can see from this example that the function is ne
truly Gaussian, indeed it is always of the form lnP;(3N/2
21)lnE2bE, which can easily be made independent ofN
by choosing appropriate units. The central-limit theorem
plies because the width of the distribution scales asN1/2,
which means that fluctuations with any physical significan
are all concentrated near the turning point of the funct
ln P. The theorem only has meaning because of the sig
cance one attaches to values of the variate that differ by o
a few standard deviations from the mean. In practical ter
it is therefore essential to normalize fluctuations to the st
dard deviation in order to test the central-limit theorem.

In the case of dependent variables, the limit distribut
can be different from the Gaussian form. Two types of d
pendent random variables can be defined@3#: ~i! weakly de-
pendent, in which the correlation function falls to a const
value in a finite range, and the standard deviation again
ies asAN; ~ii ! strongly dependent, in which the fluctuation
vary as a power ofN different from 1

2 . Case~i! corresponds
to a system with a finite correlation length. In case~ii !, which
includes systems with critical fluctuations, the central-lim
theorem does not hold, but a reasonable PDF can be obta
by normalizing to the variance, hence to an appropri
power ofN, with rÞ0. Defining the~scalar! order parameter
to be the intensive quantityz5Z/N, and using the scaling
relations for a finite system, one findsr5(12h/2)/D. The
limit distribution is now expected to be non-Gaussian, as
be shown explicitly for the Ising model@4,63#. Note, how-
ever, thatr remains nonzero even at the upper critical
mension~taken asD54 here! when h50 and where one
might legitimately expect a Gaussian PDF. The conditionr
Þ0 may therefore be a necessary but not a sufficient co
tion to ensure non-Gaussian order-parameter fluctuation

Case~ii ! is not actually limited to critical fluctuations: th
example of a dangerously irrelevant variable discussed in
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text also falls into this category, withr52/D21/2. Here,r
does go to zero as the upper critical dimension is reached
the danger of the irrelevant temperature variable disappe

An ordinary critical point is more complicated than tho
of the 2D XY model. In this case, the correlation length
only infinite precisely at the critical temperature. A no
Gaussian limit function can therefore only be found on
locus of points such thatj/L is a constant as the thermody
namic limit is taken. Thus, fixing the temperatureTÞTC and
varying N will always cause a transition from non-Gaussi
to Gaussian statistics. Conversely, fixingT5TC , one will
only arrive at the stable limit function in the thermodynam
limit. One can therefore imagine a set of loci of consta
PDF in @T,L21# space that converge on@TC,0#. We have
suggested@21# that there is one such locus,@T* (L),L21#,
where the PDF has approximately the same form as tha
the 2DXY model. Thus, to sit at the critical temperature a
change L is not the same as traveling along the loc
@T* (L),L21#. From scaling argument@64# one can check
that the tails of the PDF atTC should have the formP(m)
;exp(2md11) in order to yield the correct scaling relation i
the presence of a weak magnetic field:^m&;h1/d. We do not
find this, despite the same scaling relation holding for the
XY model withd58pJ/kBT21. This difference may come
from the difference in trajectories in the space of variableT
andL.

A final point concerns the central-limit theorem as appli
to a vector order parameter,m, such as theXY model. In the
high-temperature limit, the fluctuations in the vectorm fol-
low a two-dimensional Gaussian centered onm50 and the
PDF for the scalarm5umu follows a ‘‘Maxwell speed distri-
bution’’ for a two-dimensional gas. In an ordered regime a
even in the critical regime forD52 @14#, s!^m&, which
meansm behaves, to an excellent approximation, as a o
dimensional quantity. The symmetry breaking therefore
duces a change in topology for the fluctuations inm. This is
generalizable to order parameters of higher dimension.

APPENDIX B

The graphsgk can be written, in the large-N limit, in
terms of power series. For example,
es,
g25 lim
N→`

4

N2 (
m51

Q

(
n51

Q
1

~422 cos 2pm/AN22 cos 2pn/AN!2
1

4

N2 (
m51

Q
1

~422 cos 2pm/AN!2
, ~B1!

whereQ5(AN21)/2. The sum is dominated by the contributions for smallm andn, but as the polem50, n50 is explicitly
excluded from the sum, it remains finite even in the limitN→`. Taking only the first terms in a development of the cosin
which is exact in the thermodynamic limit, one finds
6-19
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g25
1

4p2 (
m51

`
1

m4
1

1

4p4 (
m51

`

(
n51

`
1

~m21n2!2

5
1

360
1

1

4p4 (
m51

`

(
n51

`
1

~m21n2!2
, ~B2!

and in general, forgk ,

gk5
1

4p2 (
m51

`
1

m2k
1

1

4p4 (
m51

`

(
n51

`
1

~m21n2!k
. ~B3!

APPENDIX C

For large and positivey, the functional form ofw is
w(y);(1/8p) ln y1const. To evaluate it in detail, we use th
results of Appendix B to write

w~y!5 lim
Q→`

1

2p2 (
m51

Q S 1

m2
2

1

m21 ŷ
D

1
1

2p2 (
m51

Q

(
n51

Q S 1

m21n2
2

1

m21n21 ŷ
D ,

~C1!

whereŷ5y/4p2. The first two summations give, in the lim
of large Q, a constant and a function ofŷ, which tends to
zero for large argument:

lim
y→`

1

2p2 (
m51

` S 1

m2
2

1

m21 ŷ
D 5

1

12
. ~C2!
04110
The double sum can be rewritten as

1

2p2
(

m51

Q

(
n51

Q S 1

m21n2
2

1

m21n21 ŷ
D

5
1

2p2
(

m51

Q

(
n51

` S 1

m21n2
2

1

m21n21 ŷ
D 2R~Q,y!,

~C3!

where R is a correction term that vanishes in the limit
largeQ,

R~Q,y!5
1

2p2 (
m51

Q

(
n5Q11

` S 1

m21n2
2

1

m21n21 ŷ
D .

~C4!

The sum can be evaluated in the limitQ→` using the Abel-
Plana formula@65#,

(
i 5p

q

f ~ i !5E
p

q

f ~x!dx1 1
2 f ~p!1 1

2 f ~q!

12E
0

` Im@ f ~q1 ix !2 f ~p1 ix !#

exp~2px!21
dx, ~C5!

wheref is any real function that satisfied the assumptions
@65#. Applying this toR(Q,y), we have
R~Q21,y!5
1

2p2
(

m51

Q21 1

m
@p/22arctan~Q/m!#1

1

2~m21Q2!
14QE

0

` x dx

~x22m22Q2!214Q2x2

1

exp~2px!21

2
1

2p2
(

m51

Q21 1

Am21 ŷ
@p/22arctan~Q/Am21 ŷ!#1

1

2~m21 ŷ1Q2!

14QE
0

` x dx

~x22m22 ŷ2Q2!214Q2x2

1

exp~2px!21
.

is

of

m,
The first term tends, in the large-Q limit, to the integral

(
m51

Q21
1

m
@p/22arctan~Q/m!#→E

0

1 dx

x
@p/22arctan~1/x!#

52E
0

1 ln x dx

11x2
5Catalan.

~C6!
A similar behavior is found for the fourth term, since in th
limit the dependence onŷ of this term vanishes asŷ/Q2. The
other terms are corrections proportional to the inverse
some power ofQ, so thatR vanishes in the large-Q limit.
The double sum~C3! can thus be reduced to a simple su
since

(
n51

`
1

n21z2
52

1

2z2
1

p

2z
cothpz. ~C7!
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We therefore have, for largey,

1

2p2 (
m51

Q

(
n51

` S 1

m21n2
2

1

m21n21 ŷ
D

5
1

2p2 (
m51

Q

2
1

2m2
1

p

2m
cothpm1

1

2~m21 ŷ!

2
p

2Am21 ŷ
cothpAm21 ŷ

.2
1

24
1 (

m51

` 1

4pAm21 ŷ
~12cothpAm21 ŷ!

1
1

4pm
~cothpm21!1

1

4p S 1

m
2

1

Am21 ŷ
D .

~C8!

The series containing the hyperbolic function ofy vanishes
in the limit of largey and the asymptotic behavior of the la
term can be evaluated with the Abel-Plana formula~C5!,

(
m51

` S 1

m
2

1

Am21 ŷ
D .E

1

`

dxS 1

x
2

1

Ax21 ŷ
D 1 1

2

12E
0

` x dx

~11x2!~exp 2px21!

5 ln~11A11 ŷ!2 ln 21g, ~C9!

where the constantg is equal to

g5 1
2 12E

0

` x dx

~11x2!~exp 2px21!
.

l
e-
be
B.

04110
This can be proved by again applying the Abel-Plana f
mula to the function 1/m, since we know that(m51

n 1/m
. ln n1g. The constant(m(12cothpm)/4pm in Eq. ~C8!
can be rewritten as

(
m51

`
1

4pm
~cothpm21!5 (

m51

`
1

2pm (
n51

`

exp~22pmn!

52
1

2p
ln)

n51

`

@12exp~22pn!#,

~C10!

and finally the results~C8!–~C10! give the asymptotic be-
havior of w for largey:

w~y!5
1

8p
ln y1

1

24
2

1

4p
ln 4p1

g

4p

2
1

2p
ln)

n51

`

@12exp~22pn!#1
1

2y
1••• .

~C11!

The last term comes from a further study of the Abel-Pla
formula, which gives the other correction terms in the
verse power ofy. An identical analysis gives the finite-siz
magnetization

^m&5expS 2
t

2
Tr G/ND , ~C12!

where TrG/N can be expanded as

1

N
Tr G5

1

4p
ln CN

C5expH p

3
12 ln

A2

p
12g24 ln)

n51

`

@12exp~22pn!#J
51.8456. ~C13!
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