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Magnetic fluctuations in the classicalXY model: The origin of an exponential tail
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We study the probability density function for the fluctuations of the magnetic order parameter in the
low-temperature phase of theY model of finite size. In two dimensions, this system is critical over the whole
of the low-temperature phase. It is shown analytically and without recourse to the scaling hypothesis that, in
this case, the distribution is non-Gaussian and of universal form, independent of both system size and critical
exponentn. An exact expression for the generating function of the distribution is obtained, which is trans-
formed and compared with numerical data from high-resolution molecular dynamics and Monte Carlo simu-
lations. The asymptotes of the distribution are calculated and found to be of exponential and double exponen-
tial form. The calculated distribution is fitted to three standard functions: a generalization of Gumbel’s first
asymptote distribution from the theory of extremal statistics, a generalized log-normal distributionyand a
distribution. The calculation is extended to general dimension and an exponential tail is found in all dimensions
less than 4, despite the fact that critical fluctuations are limitdd+®. These results are discussed in the light
of similar behavior observed in models of interface growth and for dissipative systems driven into a nonequi-
librium steady state.
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[. INTRODUCTION scale invariant in the thermodynamic limit and can be ob-
tained from the fixed point of a renormalization-group trans-
formation [3,4] (see Appendix A Thus, renormalization-
The fluctuations in a global measure of_a many-body SYSyroup theory can be regarded as a generalization of the
tem are often assumed to be of Gaussian form about thgsniral-limit theorem to systems that are correlated over all
mean valug 1]. This assumption is nearly always true if the |04 scales. The critical PDFs can be termed “universal,”
system in ques@ion can be divided into statisticglly indepenin that, when properly normalized, they depend on at most a
dent microscopic or mesoscopic elemej# as dictated by few basic symmetries that define the universality class of the

the central-limit theorer(seg Appendle However, In cor- system. A non-Gaussian and universal PDF is therefore a
related systems, where this is not the case, there is no UNirect signature of the fluctuation-driven critical phenomena
versal reason to expect the central-limit theorem to apply 9 P

The spectrum of fluctuations can then take on a multitude oﬁ‘hat have revolutionized modern statistical mechanlsls

different mathematical forms, including those of other, well-Analytical and numerical work6—9] on Ising, Potts, andY
defined, limit distributions. models has shown that a generic feature of such systems is a
In this context, the most studied correlated systems aréKewness, with large fluctuations below the mean, towards
critical systems. At the critical point of a second-order phasémall order-parameter values.
transition, a correlation lengtt¥, diverges from the micro- ~ Correlations that are both strong and long range are a
scopic scaldtaken as unity throughout the papeit is only ~ feature not only of critical phenomena but also of systems
cut off, in an ideal world, by the macroscopic or integral driven far from equilibrium. However, in the case of driven
scaleL. The probability density functiofPDF) for the order ~ systems, the absence of a microscopic theory means that one
parametem associated with the diverging correlation length has to rely heavily on empirical observations from experi-
is essentially the exponential of the free enerBym) ment and numerical simulation. Labbet al. [10] have
~exp(—F(m)/kgT) and takes on an approximately Gauss-shown that the PDF for the energy injected into a closed
ian form as long as the Landau approximatiéi(m)~a  turbulent flow at constant Reynolds number is also non-
+bm?+ - -, is valid. Close to the critical point, the Landau Gaussian and universal. In this case, “universal” means that
approximation breaks down and the PDF becomes nornthe PDF, when suitably normalized, does not depend on the
Gaussian. The key assumption of the renormalization-grouReynolds number or several other paramettos example,
theory of critical phenomena is that the critical PDF remainsthe type of fluid. The PDF again has a marked skewness
with an apparent exponential tail for fluctuations towards
low energies.
*Permanent address: CNRS, UMR 7085, Laboratoire de Physique The present work is motivated by our empirical observa-
Theorique, Universite_ouis Pasteur, 67084 Strasbourg, France. tion [11,17] that the universal PDF of energy fluctuations in
TAuthor to whom correspondence should be addressed. Electronttie turbulence experimefit0,13 is, within experimental er-
address: peter.holdsworth@ens-lyon.fr ror, of the same functional form as that of the universal

A. Motivation for the present work
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P(m) for the critical system that we have studied. The latter Equation(1) is demystified somewhat by recognizing that
is the spin-wave limit to the low-temperature phase of thethe normalizing facto. ~#'” is, in such an ideal system,
two-dimensional (2D) XY model[14,15 that is known to  proportional to the mean value of the order paramétaj,
capture the critical behavior of the full 2RY model[16—  Further, one of the key properties of a critical system is that
20]. The distribution is shown in Fig. 2: it is asymmetric, the standard deviation of the distributian, scales with sys-
with fluctuations below the mean approaching an exponentigkem size in the same way as the mean value. This property,
asymptote, while those above the mean approach a doubilghich is a direct result of the hyperscaling relation and that
exponential. This observation led us to the proposition thatve refer to as the hyperscaling condition, means that( Eq.
many systems, both equilibrium and nonequilibrium, sharingcan  alternatively be written in  the formP(m)
the property of long-range correlations and multiscale fluc-=1/cP (m/o). Thus o provides, as might be intuitively
tuations, should share the same features, at least to a goedpected, the correct normalization of the order parameter,
approximation[11,21. The proposition appears to be strik- such that a reasonable PDF of finite width is obtained in the
ingly confirmed in Ref[21], where, from numerical simula- limit N—o. In this paper, in addition, we shift the distribu-
tion, similar behavior is observed in a number of differenttion with respect to the mean value and define
systems: for order-parameter fluctuations in the two-
dimensional Ising model and in the two-dimensional perco- oP(m)=11(0), (2
lation problem, as well as for fluctuations in global quantities
for models of forest fires and avalanches, driven into a selfV"ere
organized critical state. This appears to contradict the idea m—(m)
that the PDF should depend on the particular universality 0= . (3)
class of the model in hand. One possible way of accounting o
for our observations is that many universality classes shar
common features, with the differences between them appe
ing either outside the range of physical observation, or bein
hidden by experimental error. There are therefore many ope
questions regarding a possible and much desired connectic?
between critical phenomena and nonequilibrium systems a8
well as regarding the details of the PDF in critical systems. It _ )
is these questions that we address in the current paper, via an C. The two-dimensional XY model
analytic study of the PDF for order-parameter fluctuations in - The model that we study, the harmonic spin-wave limit to
a finite XY model in arbitrary dimension. the XY model, is defined in Sec. Il for the case of two di-
mensionsP = 2. This is the dimension of most interest in the
B. Normalization of the order parameter present context, as the system is at its lower critical dimen-
§ion. At low temperature, the couplinfkgT is an exactly

We discuss order-parameter fluctuations of finite system ) . . 4 " -
in terms of distributions that are calculated in the thermody-marg'nal variable that characterizes a line of critical points in

namic limit, N— . As discussed in Appendix A, it is essen- zero applied' field23]. The critical Iine_is separated from t.he )
tial to normalize the order parameter by an appropriatéaaramagnet_'(? phase by the Kosterllt_z_-ThouIess-Berezmsku
power of N=LP in order to obtain a distribution of finite phase transition alrg [16’13' The critical phase that ex-
width, or, equivalently, a form foP(m) that is independent ISts .belOW this temperature Is an attractive subpct of INVes-
of system size. By extending the scaling hypothesis to inligation from both an analytic and a numerical point of view.

o ; Its physics is entirely captured by the harmonic Hamiltonian
S:gr? g:rg;%;gjyemgzz], the following form of P(m) has [16,19,2Q with the result that many calculations can be per-

formed microscopically, without the need to use renormal-
P(m,L)~LA"P (mLA" ¢/L). (1) ization techniques, or the scaling hypothesis. From a numeri-
cal point of view, simulation results near a single, isolated,
Here B8 and v are the conventionally defined critical expo- critical point are often complicated by a shift in the effective
nents for the magnetization and correlation lengjtiiespec-  critical temperature by an amount scaling to zeroLas””
tively [22]. The appropriate normalization of the order pa-[7-9], making it unclear exactly which temperature should
rameter is provided by the factbr #/” while fixing different  be studied. Indeed, numerical studies of Ising and Potts mod-
ratios £/L will in principle result in an infinity of different els[7-9] do find distributions whose form depends on tem-
limit distributions ad.—o0. We concentrate on the case of a perature in the critical regiofsee Appendix A In the 2D
truly critical system with correlations over all length scales,XY model, as the system is critical over a range of tempera-
which should result in maximum deviation from the Gauss-tures there are no such technical problems and data(fior)
ian form. Here the dependence écan be dropped from Eq. can be collected at all points beloWrg. These factors
(1), and P (m) should closely approximate a single univer- make the 2DXY model an ideal system with which to study
sal function of the variablenL?’ for all values ofL. In this  the effects of critical correlations.
form it is independent of the microscopic details of the sys- The finite-size scaling for the 2IXY model has been
tem, although it could indeed depend on the universalitydiscussed in our previous publicatiofist,15. In this work,
class of the transition through the critical exponents. we began, following BerezinskjiLl6] and R&z and Plischke

N this representation one expects the PDF to fall, in the
ermodynamic limit, onto a single universal curve. Provided
at finite-size corrections to scaling are negligible, one
ould observe data collapse onto this universal curve for
rge but finite system sizes.
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[24], an exact calculation for the PDF of order-parameteivelopment gives an accurate representation of the true order
fluctuations. This calculation is completed and presented iparameter. This result is more than a mathematical curiosity;
detail in the current papdiSec. I). It shows explicitly that the harmonic approximation for the 2RY model maps di-
the non-Gaussian behavior in the 20¢ model stems from  rectly onto the Edwards-WilkinsoEW) model[27-29,3]
the influence of all length scales from the microscopic to thefor interface growth and the linearized order parameter is
macroscopic scale. We propose that the same is true for othéglated to the square of the interface widtr, m=1-w?.
complex systems including those driven far from equilib-Our PDF, therefore, corresponds precisely to that for inter-
rium. This provides a basis for understanding the apparerface width fluctuations and for which, in two dimensions, the
overlap of their PDFs and provides an unexpected experiyperscaling condition for the observabl is explicitly
mental motivation for studying a system as simple as the 2Dviolated.
XY model.

Two results coming out of our calculation are worthy of D. Organization of the paper
note at this _st_age._The first is an exact analytic result that is The rest of the paper is organized as follows. In Sec. I,
rather surprising given the previous discussion and the gen-

eral belief concernind the dependence of the PDE on uni er\{ve present details of the calculation for the PDF in the 2D
! Ny P UnIvers v model. (For convenience, throughout this paper we use

sality class: shifting the curve with respect to the mean, eqhe term “XY model” to refer to either the model defined by

(?)’ gives us universal data collapse, not qnly for all system{he spin-wave Hamiltonian or the fulY model over a tem-
size but also for all temperatures for which the harmonic

Hamiltonian is valid. The ratio of exponenfd v depends perature range in which the spin-wave approximation is

linearly on temperature, from which we deduce that the PDléla"d' This should not cause any confusion in reading the
nearty P ' . d?resent paper, but our choice of terminology should be borne
is independent of the value of the exponents along the line

critical points. One should note, however, that these points, mind when comparing to other work on théY model)
P T ' ' : POINSve show explicitly that it is a universal function of system
are rather special and the result cannot necessarily be genet- ' :
. - oo . Size and of temperature and find an exact expression for the
alized to all critical points: not all the usual critical expo-

. characteristic functiofSec. Il A). Transforming the distribu-
Eﬁtntii;:/? dﬂzﬂgegéf;%rde)ﬁrp?*Zirtﬁgtgx?égimﬁg Z;:ZI tion numerically, we compare it i_n de_tail W_ith extensive
scaling relations are val}d in terms of the ra,t?c.l)v only and Monte Carlo and molecul_a_r-dynamlcs simulations of the full
this “weak scaling” [18] means that there is only one inde- XY model and show that it is clearly the complete §o|ut|on of
pendent critical exponeng=2/v [17], compared with two the proplem(Sgc. 8. We calcglgte the asymptotic values
i . ~r P : of the distribution for large deviations below and above the
for a regular critical point. This is all that is required for the

analysis leading to EqJ), but is not sufficient to ensure a mean, which we find to be exponential and double exponen-

unique functional form for the general problem with two tial, respectively(Secs. Il C and 11 D.

exponents. However, it does seem consistent with the ide In Sec. Ill, we try to fit the computed PDF to standard
P : o : “finctions by comparing the moment expansion of the gener-
that only small differences separate results for different uni-

versality classes ating_function with thpse of the FOL_Jrier transform of the test
j S . . function. Three functions are considered:

The second result, which is relevant to mention at this
stage, concerns the finite-size scaling data collapse of Eqg. expa 6—s—exp 0—s)],
(2). We find that the hyperscaling propery~(m) is not a
necessary condition for data collapse onto a non-Gaussian 1
function. With our definition(2), the first two moments of I1(6)~ ﬁexp{—[ln(s— 6)—a]2}, (4)
P(m) fall trivially out of the calculation and all that is re-
quired for data collapse is that the mome(#8) for p>2
are independent of the system size. This is the most general
condition for non-Gaussian data collapse, while the PDF
only satisfies the scaling hypothesis in the form of &g, if  The PDF is fitted to an excellent approximation over the
the hyperscaling condition is satisfied. We give, in Sec. Il A,physical range by the first two functions, while the third
an explicit example where data collapse onto the universajives a reasonable but slightly inferior fit. The first function,
curve of the 2DXY model occurs, but where the hyperscal- with a an integer, comes from extremal statisti§gc. Ill A).
ing condition is not satisfied. If we make an expansion of thdt is Gumbel’s first asymptote, corresponding to the PDF for
order parameter about a perfectly ordered state=() in  the ath largest value from ensembles Mfrandom numbers
powers of temperature, keeping only the linear term, them32]. The interpretation witta noninteger(we find a= 7/2)
(m) diverges logarithmically with system siZ5,26, while  is not clear, but a connection between critical phenomena
the standard deviation is a constant. The ratigm) is ac- and extremal statistics is a very appealing con¢8ft34.
tually anincreasingfunction of system size throughout the The second function is a generalized log-normal distribution
physical domain. It is only when the order parameter is cor{Sec. Ill B). Unlike the first curve, it does not have the cor-
rectly defined on the intervgld,1] that the hyperscaling re- rect asymptotic forms but despite this it fits just as well over
lation is reestablished, but written in the forf®) the two  the physical domain. The third function is)& distribution
distinct variables have the same universal PDF, even outsidgescribing identical and statistically independent degrees of
the range of temperature and system size for which the ddreedom(Sec. Il O. It gives reasonable qualitative agree-

(S— 0) vI2— 1e7 a(s—¥0) )
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ment indicating that a good, zeroth-order description of avhere the angles, refer to the orientation of classical spins
correlated system is in terms of a reduced number of statis5 confined in a plane and where the sum is over nearest-
tically independent variables. However, this description hasieighbor spins. In the following we consider a square lattice
its limits, as shown by the fact that this function fits the exactof sideL, with periodic boundaries. The instantaneous mag-
PDF slightly less well than the other two. This variety of netization is a two-dimensional vectorthat, in zero field, is

different fits suggests that one should treat the physical infree to point in any direction. We define the order parameter
terpretations that they offer with caution; however, even Wlth?s the scalam=|m|

this caveat in mind they still represent useful mathematical

tools. To investigate this point further, in Sec. 1l D we de- N

rive an approximate functional form for the curve using an m= E E cog 6,— 6) (6)
analysis due to Pearson that reconstructs the PDF from the N =1 ' '

four principal moments, which in this case have been calcu-

lated analytically. The Pearson analysis gives a quite dil‘ferv\,hereg= tan 1(3; sin 6 /=, cos#) is the instantaneous mag-

ent function, which also gives a good description of the eXach atization direction. Within small corrections, which disap-

tphgf oxleernazgt]gsr'ﬁ:;;aggg cfmtT C;Sri:ﬁ::\:aestrgg iﬂ‘;h:%?eth ear in the thermodynamic limit, this corresponds to the
9 ’ b ore conventional definition

curve over a typical experimental range is essentially define

by its skewnessy, and kurtosisx. Therefore, an alternative N >
way of summarizing the observed universality,21 is that . 1 /( 3)
"N =1 '

v and k, for several different systems, have the same scale-
invariant values as they do for th€Y model.
In Sec. IV, we extend our calculation © dimensions,

which apart fromD =2 are all noncritical. Despite this, we : : :
find evidence of the integral scale for all dimensidns 4. trajectories flow, at large length scale, towards a regime

For D=1, the PDF for the linearized order parameter show where only spin-wave excitations are relevib®,20. The

an exponential tail. However, we show numerically that théSphySICS of the low-temperature phase is therefore completely

PDF for the correctly defined order parameter is quite diﬁer_captured by the quadratic Hamiltonian

ent and is just what one would expect for a paramagnetic

system without correlationgSec. IV A). The caseD=3 H=£ 2 (6,— 6,2 @)
holds a final surpris€¢Sec. IV B): despite the long-range or- 265 Y

der of the low-temperature phase, the PDF is still not a

Gaussian function. The temperature is a dangerously irrelye therefore restrict ourselves, in the following calculation,
evant variable in the ordered phase of theX8D model with  to this Hamiltonian and neglect the periodicity of the vari-
the result that the susceptibility remains weakly divergent agpjesg. . Our calculation cannot therefore take into account
low temperatur¢35]. The result of this divergence is that the 1,4 presence of vortex pairs. Close s in two dimen-
asymptotes of the PDF for Iargse fluctuations are exponentiai;ons and also in one dimension, where free vortices are
below the mean and expgsté”) above the meatwhere ooy ant variables, we would expect a deviation from the

“est” i$ a qonstanl. The hyperscaling_relation, In this case, behavior shown in Fig. 2. This point is discussed further
is again violated. The divergence disappears at the upper T

I . . i . elow.
c}rﬁlcal dimension and we find a truly Gaussian PDF fbr We now calculate the PDP(m) that the system be in a

In Sec. V, we conclude by returning to the physical rea-State with.magnet.izatiom,.using the standard property that
sons for the exponential tail in the PDF. TKe&Y model is a probability density function may be defined by Fhe value of
diagonizable in reciprocal space reducing it to a model oftS moment$36]. Indeed,P(m) can be expressed in terms of

statistically independent degrees of freedom: spin-wave anits characteristic function(x):
plitudes at wave vectay, ¢4. The amplitudeg ¢§) diverge

at smallq and are the modes that give the non-Gaussian P(m)= jx % e‘mxﬁ(x) ®)
fluctuations. In one dimension they completely destroy mag- 2 ’

netic order, in two dimensions they give critical behavior,

and between two and four dimensions they give remnanfyhich can in turn be expanded in a Taylor series whose
critical behavior in the form of a dangerously irrelevant vari- coefficients are the momentsP®):

able.

For all temperatures beloWyrg, the renormalization-group

— o0

Il. PROBABILITY DENSITY FUNCTION FOR THE B(x)= X_p ‘7p_P =3 (_ix)p<mp> (9)
ORDER PARAMETER IN THE 2D XY MODEL p=0 P! 9xP wo P70 p! ,
A. Analytic expression
. ' I so that
The 2D XY model is defined by the Hamiltonian
2 odx o (—ix)P
H=—-J2 cos6,— ), 5 Pm)=| o—e™> ——m). (10
& = 2™ p=o P
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Equation(10) assumes that the series converges and that al g,
the moments exists. Note that this last feature demands the q
P(m) falls off faster than any power law on.

The program for calculating®(m) is therefore to calcu- a)
late the moment¢mP), sum the series, and transform the
final result. To this end it is useful to define the Green func- q
tion in Fourier space,

1
4—2 cosg,—2 cosqy,

G(a)= 11

b)
where g, and g, take the discrete values f2L)n of the
Brillouin zone withn=0, ... L—1. We also define the set
of constantsgy==,G(q)*/N¥. The value ofg; diverges
logarithmically with system size, illustrating the critical na-
ture of the low-temperature phase[20,26: g;

€4
=(1/41)In(CN), C=1.8456 [37]. The values ofg,, k=2 2
are independent df in the thermodynamic limit. We find
0,=3.8667x 10 3, g3=7.5719< 10 °, g,=1.7626x10 &, 0 q
and that for large, g, behaves like ()1 2</2(k—1); see
Appendix B.
The first moment is easily calculated within this approxi-

mation (see Appendix B and Ref§26,14]). One finds that q+k+
(m) decreases algebraically with the size, as one would ex-
pect from finite-size scalinf22],

FIG. 1. Diagrams contributing to the distributiota) to order
72, (b) to order73, and 9 to orderr*.
<m>: (NC)_kBT/B"TJ_ (12)

factor of 7¢ is common to all graphs witk lines connected
As discussed above, while the critical expongBiandv are  together, with an even connectivity at each vertex. For ex-
not |nd|V|duaIIy defined for the 2IXY model, their ratio is amp|e, up to the second-order termsnwe have
defined[18] and the system obeys what Kosterlitz refers to
as weak scaling18]. Through Eq.(12), the ratio of expo-
nents is definedB/v= 5/2=T/4xJ. (mPy=(m)P

For higher moments we need a more systematic approach.

A specific property of the quadratic Hamiltoni@n) is that
the moments can be calculated using the tools of Gaussian (14)
integration [14,3§. In particular, by the application of
Wick’s theorem, propagators of ordep 2n reciprocal space
can be exactly expressed in terms of quadratic propagators
that the pth moment is proportional tgm)P. One finds
[15,39

T\? 1 1
— —_— —_ —_— 2 e
1+ 2) 212P(P=1) g 2 GRIN+ -+ |.

The term=,G&(r)/N?=3,.4G(q)%N?=g, is the value of
e one loop graph with two lines, as shown in Figa)l
There is an additional symmetry factoix2(p—1), which
is the number of possible positions for such diagrams con-
1 necting two lines on a closed graph on a latticepgdoints.
2 For the third-order term im, we have only one diagram with
(2N)P ry, o o, o= three vertices, of valugs, Fig. 1(b). The symmetry factor is
equal top(p—1)(p—2)X4X2. The factor &2 comes
X exd — T 2 oGr(ri—1)o |, (13) from the number of possible ways of connecting thre_e lines
e 17 together. For the fourth-order term, there are three different
graphs, two of which are shown in Fig(cl. The first has
where 7 is the reduced temperatukgT/J and Gg(r) the three loops and two vertices, the second, of valye has
regularized Green functioB .. ,G(g)exp(q-r)/N. In order  one loop and four vertices. The third graph, not shown, con-
to compute each moment of ordgrwe have to evaluate the sists of two disconnected one-loop graphs of the type shown
sums over the positions and operaters The idea is to in Fig. 1(a). In general, at each order in, we have the
expand the exponential ter@d3) and introduce a diagram- product of different closed diagrams, with one or many
matic representation of each quantity computed. For exfoops. It appears that the values of multiple-loop graphs,
ample, we represent;Gg(r; —rj)o; by a line betweemand  such as the first one in Fig(d, are zero in the thermody-
j on a lattice ofp sites. The general term of the expansion isnamic limit. We therefore find that only the one-loop dia-
then a set of graphs with a combinatorial factor for the sym-grams are relevant and the value for such a diagram, kvith
metries. Sinceri2=1, only closed diagrams are relevant, thelines andk vertices, isg,. We can now express theth
factor 2 being canceled by the sum over all the. The  moment of the magnetization as

(mP)=(m)®
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(mP) (_T)k 1 = dx m—(m) <« Ok \/? K
(m)yP k=2 | 2] ki P(m) f—x 27o exXg X o +k22 2k X g, |
(20)
X
r=1 kgt +k=kk=2 which is the principal result of Refl15]. Defining oP(m)

=TII(6), we see that the functiol depends uniquely on the
variable 6=(m—(m))/o and theg,, k=2. As theg, are
constants in the thermodynamic limil(6) is a universal
function, independent of both system size and temperature.
The asymmetry comes from the fact that the ratios
9«/(g,/2)¥?, k=3 are nonzero and this constitutes the ab-
normal influence of the integral scale. If, in the thermody-

including the symmetries. For example, the factor associateg2M'° limit, k=2 were the only nonzero term, one would

with one triangle iSC(3)=4X2. It is then relatively easy to arrive ‘T"t a Gau;san PD.F centered(mn).. Departure from a
show that Gaussian function is typically characterized by the skewness,

y=(6%), and kurtosisx={#*) [40]. We find

KOk, 'gkrc(kl- oK)
Xp(p—1)---(p—k+1), (15

with C(kq, ... k;) a combinatorial factor that takes into ac-
count the possible ways of putting togetherines onr
graphs, the first wittk, lines, the second witk, lines, etc.,

2k Tk
Clka )= G O G k) K 9
(16) v=— W: —08907,
Next, we can use the fact that every diagram is invariant by (22
the action of the grougs, of permutations of ity single
elements, so that, instead of EJ.6), one can use a more k=343 94 ;=44
convenient form for the combinatorial factor: (9,5/2)
k=rp Although we can calculate the asymptotic behaviogpf
i E C(k K _ i 2 : 1 for largek, we are not able to compute the constants analyti-
y (Koays - ko) =0 @D
Yoes, r K r cally and so we cannot sum the seri26). However, we can
. o ) transform it into a very much more useful form by keephg
Settingfy =gy (—7)"1/2k;, we arrive at the result large but finite and inverting the sums owgandk. The even
‘ and odd terms are separated and summed independently and
(mP) S S 1 5 . ‘ we eventually find
(myP E S g T=k K
= 92 dX , g
Xp(p—1)---(p—k+1) H(6)=ﬁ \/;Zem{lxﬁ\/;
=1+ Zk e R P | ‘
R TID- DR L e . —g,o 5XG(q)/N- 5 arctarixG(q)/N)
o Ok K k| p 1 2 2/N2
exg >, S (— 7|z (18) + 7L+ X*G(q)FIN?] | 1 (22)
k=2 .1

For p=2, we find <m2>/<m_>2:1+9272/2 and defininge  The sum over and the integral ovex in Eq. (22) can now
=y(m?)—(m)* we thus arrive at the hyperscaling condition pe performed numerically, allowing the evaluationl¢6).
that the ratioo/(m) is independent of the system size. Hence

kaT B. Comparison with simulation
o= \/@ ——(m) (19
2 J ' To test the above calculation and to verify its scaling
properties, we have carried out extensive numerical simula-
One can now substitute f¢mP) in Eq. (10) using Eq.(18)  tions of the 2DXY model with full cosine interaction, Eq.
and after rearranging the summations the distribution cans), for different values of temperature and system size. In
finally be expressed as an integral, depending on the valuegidition, we have also done microcanonical molecular-

of the one-loop diagramgy only, dynamics (MD) simulations to check the possible depen-
g " dence of the PDF for fluctuations on the statistical ensemble.
[ ax . B Ok . K The Monte Carlo simulations were performed with®10
P(m)= f,x 27 exr{lx(m (m))+k22 2k {mx)"]. Monte Carlo steps per spin, with 48teps used for equili-
bration. The MD simulation was carried out for system#of
Changing variabless—x/o, and using Eq(19) we find classical rotator$41], with Hamiltonian
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0.5 T

FFT
MC
04|
= 03}
E
o
b 0.2t
01}
0
-8 4 2 4
(m-<m>)/c
10° FIG. 3. The PDF for fluctuations in dimensi@h=2 from MC
and MD simulations. The first set of data corresponds to canonical
107 | MC simulation for a system of siz&d=32 at temperaturel
=0.1, 0.3, 0.5. The second set of data corresponds to microcanoni-
. 2 cal MD simulation at temperatureT=0.7 and size N
= 102 | =16, 32, 64.
o
102 | _ .
© tremely good agreement with the numerical data. The curve
104 L is asymmetric, with what appears to be an exponential tail
for fluctuations below the mean and a much more rapid fall
16° off in amplitude for fluctuations above the mean.

In Fig. 3, we show the PDF for fluctuationsiimobtained
from MC simulation for fixed system size and varying tem-
perature, as well as MD for fixed temperature and different

FIG. 2. The PDF, as obtained from a fast Fourier transformsystem sizes. The result of RgL1] and Sec. Il of this paper
(FFT) of Eq. (22), compared with MC simulation of a 2IXY is that, for the harmonic Hamiltonian, E¢), I1(6) is inde-
model at temperatur€=0.1 of sizeN=32? (upper: natural scale; pendent of both system size and temperature, while we have
lower: semilog scale explicitly tested this result against the PDF generated for the

full Hamiltonian, Eq.(5). Qualitative agreement is clearly
N p2 excellent, independent of the ensemble used, but there are
Hg= 2 —+J2 [1—cog 6,— 6;)]. (23) small systematic deviations in the tails, when observed on a
=12 logarithmic scale$45], as shown in Figs. 4 and 5. We can
only expect agreement between the analytic result and simu-
The equations of motion were integrated numerically, usindation in the range of temperature sufficiently beldwg
a Verlet algorithm. In order to explore the low-temperaturesuch that vortex pairs do not influence the PRA]. Even in
fluctuation regime, the initial configuration of the system wasthe absence of vortices, one must expect small variations
chosen with the spins pointing in the same direction and with

8 6 4 2 0 2 4
(m-<m>)/c

a Gaussian distribution of momenta. The system was then 10° . .
equilibrated for a time of 10- 10’ sweeps and data collected FFT —
over a time span of 8- 10° sweeps according to the size of 107 1:8;

the system. Note that one cannot use the harmonic interac- T=05«

tion (7) to study deterministic dynamics in the microcanoni-
cal ensemble, as this would allow no coupling between the
spin-wave modes and no evolution would be possible. The
nonlinearity of the cosine interaction allows mixing between
the normal modes and the sampling of equilibrium states.
Here we do not report work at high enough energies to allow
vortex formation[42,43 with any significant probability.
Rather, the nonlinearity plays the role of the heat bath in the
canonical ensemble, while the physics is still correctly de-
scribed by the harmonic part of the interaction.

The numerical integration of Eq22), performed with a

E
o
©

[ T=07"

8 6 -4 2 0 2

(m-<m>)/c

FIG. 4. The PDF, as obtained from a fast Fourier transform
(FFT) of Eqg. (22), in dimensionD =2 compared with Monte Carlo
results for a system of sizeN=32> at temperature T
=0.1,0.3,0.5,0.7.

fast Fourier transforngFFT) algorithm[44], is shown in Fig.
2, where it is compared with Monte Carlo results fbtJ
=0.1 andN=322. The theoretical curve is clearly in ex-
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10° - - - - : tures belowT kg, even for temperatures where E¢). and
(24) represent different physical quantities.
107 } Using the Hamiltonian(7), we have
E P —lr dxfl_[da ' R
= (m)—Z on) L Lexp ix| m on < O
10-3 L
° 1 > 6.6 o
10 2r 7 N )
100 Lusde” . : . whereGi’jl is the inverse Green’s-function operator connect-
4 6 4 -2 0 2 4 ing sitesi andj with nonzero elements far andj nearest

(m-<m>)/c neighborg16], andZ=(detG~1/277) is the partition func-

. ) tion.

FIG. 5. The PDF, as obtained from a fast Fourier transform —; js oaqy 10 integrate the Gaussian integral by transform-
(FFT) of Eq. (22), in dimensionD=2 compared with MD results

P ~ ing into reciprocal space. Defining the trace Tr of any func-
for a system of siz& =82, 16?, 32, 64 at temperaturd =0.7. tion of G as the sum fog+0 of the same function o&(q)

_ _ and using{m)=1—7Tr G/2N, we find
from our theoretical result for small system sizes that stem

from the utilization of Eq.(5) rather than Eq.7). In a o
renormalization-group treatment, the nonlinearities of P(m)=f
Hamiltonian(5) scale away on changing the length scale and

the Hamiltonian is replaced by an effective harmonic Hamil-

tonian at higher temperaturg20]. For example, atT/J —%T”n(l—iXTG/N)}- (25
=0.7, forL=32, we find{m)=0.76 from simulation, while

Eq. (12) gives(m)=0.81. Thg effective c;oupling constant \ye can now use the fact that= Jg,/27 in this approxima-
can be calculated by expanding the cosine and approximagiy 1o transform Eq(25) into a dimensionless and universal
ing the nonlinear terms using a Hartree approximaft®. o

Renormalization of the nonlinearities introduces a micro-

scopic length scal@’ that gives small corrections when o g, dx 9, X
compared with the calculated PDF. However, this length H(a):J \EZ ex;{ixa\g—iETrG/N
1

ax i i 7-T G/N
5q X ix(m—{m)) X2 Tr

scale is fixed by the temperature and the corrections should

scale away as the rata'/L—0. This scenario is confirmed

in Fig. 5, where data are shown &i/J=0.7 for L — TrIn(l—ixG/N)}

=8, 16, 32, and 64 and are compared with the theoretical 2

curve. Deviations from the theoretical result are observed for = [g, dx

L=8 andL=16 but the PDF clearly approaches the pre- :f \E—exr[itl)(x)], (26)
dicted scale independence for the larger system sizes. —w ¥V 22m

NearTgrg, vortices influence the PDF, however the vor- )
tex population decreases exponentially moving away fromvhich is the same expression as E@Q) and(22), once we

Ture [42] and they only make their presence felt within the Separate th_e real and imaginary parts of the integrand. This
physical domain in a small band of temperatures near thgt_emonstratlon proves that the only reIevan_t graphs are those
transition. In this regime, the data do not fit on the universalVith only one loop, the others being zero in the thermody-

curve [14,43,45, but a detailed discussion of this point is Namic limit. o o
outside the scope of this paper. Within this linear approximation, the mean magnetization

(m) and the standard deviatian do not scale in the same
way with system size: whilg§m)=1—(T/8xJ)In(CN), o
C. P(m) for the linearized order parameter =.g,/27 is a temperature-dependent constant. This exact re-
As Eq.(22) is independent of temperature, one should beSult can be verified by applying Eq9) to Eq. (25 and

able to obtain it at low temperature where the magnetizatioi§alculating(m) and(m*) directly. The fact that we find the
is approximately same universal function for the two calculations, when writ-

ten in the form(2), shows explicitly that the hyperscaling
1 —, result o/(m)~0O(1) is not a necessary condition for non-
m=1- 2N Z (6i—06)" (24) Gaussian data collapse. Rather, it seems that hyperscaling is
a consequence, in these circumstances, of the correct defini-
tion of m as an order parameter on the interp@/1].
In fact, using this expression one can arrive at €9) in a The Gaussian limit of the 2XY model is identical to the
more straightforward manner. What is perhaps surprising i€dwards-WilkinsonEW) model of interface growth and the
that the calculation, using E@24), is valid for all tempera- linear approximation for the order parameter is related to the
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square of the interface widtm=1—w?. The PDF forw? 10°
has been studied in or@8] and two[24] dimensions to-

gether with extensions to the EW model, including nonlin- 10
earity[46,47]. All models give non-Gaussian PDF’s with the 102}
same qualitative features as Fig. 2. These models provide an .~ 3
important microscopic link between equilibrium and non- E 10

equilibrium systems and suggest that a formalism could exist 8- 107 }
that incorporates the statistical features that we have ob-

-5

served to be shared, at a global level, between such different 10

systems. 108 [
107

12 .10 -8 -6 -4 -2 0 2 4

As a first step towards an analytic form fid( #), one can (m-<m>)/c
approximate Eq(22) beyond the Gaussian approximation by
retaining only the elementg§,g95). In this case, the solu-
tion is proportional to the Airy function

1 .
H(e)ocex;{ —a0>AI

D. Asymptotes ofI1( ) for large fluctuations

FIG. 6. Comparison of the tail of the PDF with the exact asymp-
tote (long dashel Eg. (32), the true exponential tail of slope
412\/g,12=1.736 (dotted, and an effective exponential tail of
1 1 1 slope «a=1.568& ... (short dashed The curves are displaced

_ P from each other for clarity.
(3a)¥*12a  (3a)'?

(27)  grand satisfies the conditiopt =y, — 2+2/g,/ 6>y, for | 6|
a2 a2 large and we can deform the real path of the integration so
wherea=2"g5/3g; "=0.296 876. Thay, term assures that tnat it passes through the extremum on the imaginary axis.
it is not symmetric on reversing the sign 6f We find that  Near the extremum, we can expand the integrand up to sec-

the approximation reproduces qualitatively the apparent exgnd order iny—y* and perform a Gaussian integration:
ponential behavior fop<—1:

L 1 11/4]1 H(a):fl \/%S—;exp[iQ(iy*)

H(B)N[ 2\/; (3&,)1/3120 N (3(,1’)1/30

1 1 REL +iz(x—iy*)?®"(iy*)]. 3D
Xexp{ —=—0-z ] }
6a 3

However, the approximation does not allow us to extract the » 92
I1(6)|6|lexp 4 70 .

- 0
(3a)¥*120  (3a)' We finally find that the asymptotic value of the distribution

(28) varies as

asymptote above the mean, as #r0 the Airy function (32

develops oscillations.

A more fruitful approach is to look at the saddle points of \yje have superimposed the asymptotic re¢8®) and the
the integrand22), from which one can extract both asymp- | numerical integration foN= 102 of Eq. (22) in Fig. 6.
totes. Iff<—1, an expansion near=0 is not very satisfac-  The amplitude of Eq(32) is chosen so that the curves are
tory and we must rather seek the solupon for the extrema °§Iightly displaced to allow comparison of the slopes. The
the whole integrandy®(x)/dx=0. We find asymptotic solution is in excellent agreement evendfoal-

3 5 ) ) ues where the PDF shows a distinct deviation away from

\/Qaz 11y G’ X _ I—Tr G* X exponential behavior and only fails fé>— 2. Further out

2 27 NB 1+x2G2/IN2 2 N2 14+x2G2/N2° in the tail, in the range—10<#<—4, In(ll) is approxi-
(29) mately linear. However, the value of the slope is not the

) . ~ argument of the exponential in E(B2), 47%\/g,/2=1.736.
If 6is negative and real, the real part of the second term is The |ogarithmic corrections given by the tets] are signifi-
always positive and there is no solution to this equation. Weant over the whole of this range, but the curvature is so

therefore seek a solution farpure complexx=iy. In this  gmga)| that the data can be fitted to an effective exponential

case, Eq(29) becomes I1(6) ~exp(ab), with «=1.568& ... . Thedata only ap-
) proach true exponential behavior fé« — 30, which is com-
\/@02 ip = o(y) (30) pletely outside any imaginable physical range. Strictly
2 27 N2 1+yGIN ¢y speaking, it is therefore more correct to speak of pseudoex-

ponential,x exp(ax), for the asymptote below the mean.
The function ¢ has simple poles ay=—4m? —8x?, For large and positivé, a solution of Eq(30) exists for
—3272, ... and its asymptotic value near the first pgle  large and positivey. A reasonable approximation is to re-
=—47? is (y)~—2/(y—Y,). The extremum of the inte- placeG by 1/g° and perform the integration
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1 (o Nd2q 1 y The method descriped above is quite simila_r to that due to
o(y)~ Ef S 5 Pearsori48], who realized a century ago that, in many prac-
a=2a/\N 47 N°q" 1+Yy/Nq tical situations, knowledge of the first four moments of a

1 [ dq 1 distribution is sufficient to generate a curve, fitting any set of

data point§51]. Pearson developed a phenomenological dif-
ferential equation containing the numerical values of the mo-
ments, whose solution gives the fitting function. A Pearson
A more precise computation gives=In(y)/87+ a+ 1/2y analysis is performed on the calculated PDF at the end of the

+..., wherea is a numerical constant that can be computedS&ction-
exactly. An analytical studysee Appendix Cgives

~—— ——~—1Iny. 33
Am)omy q(1+q?) 87 Y 33

A. The generalized Gumbel distribution

a= L A i|n(4ﬂ)_ ilnH [1—exp —2mk)] The asymptotes32) and (35) are of the same general
24 4w 4w 2w k=1 form as those for Gumbel’s first asymptote distribution from
the theory of extremal statisti¢82]: definingz to be theath

=—0.1135144433... . (34 largest value from a set @f, i =1,N random numbers taken
For large 6, the saddle point of the integrand is thereforefrom a generatof(z), the PDF forzis
located aty* =exp 87(—a+ (g,/2)6), and the asymptotic ala,
value forIlI follows from a Gaussian integration of E@1): 9a(2)= mexp{—a[aa(z— uy)+e @t} (36)

1 -
[(6)xexpg — — e87(\(@0-2) L g %a .
8 2

(35 I'(a) is the gamma functiony, is the value ofz such thata
of the N random numbers are greater thanF(z) is the

. . ... probability of havinga of the values less than such that
Comparing the asymptote with the full curve, we again f'nd.F(ua)zl—a/N. o, is referred to as the intensitye,

that the true asymptote only fits accurately outside the physi- (N/a)f(u,). In conventional statistics would of course

cal domain, although the data are clearly consistent with e an integer. However, in what follows we are going to see
very rapid fall off in the PDF ford above the mean. an irrational number apbearing

The function(36) has an exponential tail for fluctuations
. FITTING TO KNOWN FUNCTIONAL FORMS towards large values af the opposite of the PDF, in Fig. 2.

The obvious question now arises: is the PDF generated byY¢ theréfore make a change of variableg=1-z, 0,
the characteristic functiof22) of known functional form? —(Mz—(My))/a,, which makes a mirror reflection of Eq.
We do not have a definitive answer to this question, as Wé36)' W|th|n the linear approximation for _the Ord’?f param-
are not able to transform E€22) analytically. In the absence eter, this corresponds to the relevant vanabIE being the sum
of an answer, we test the PDF against three skewed fun@f the spin-wave amplitudez— (1/2N)3;(6;— 6)* [21,50.
tions, shown in Eq(4), which describe statistics in different Changing variables, we find
physical situations. These are a modified Gumbel function,

characteristic of problems where extreme values dominate oZHG(02)=Weab(9fs)‘aeb(efs),
the sum over many contributions; a log-normal distribution,
characteristic of statistically independent multiplicative pro- b=a.o
. 2 . . . . avz»
cesses; and g~ distribution that describes the PDF of a 37)

guantity made up of a finite number of positive-definite mi-
croscopic variables. The analysis is the same in all three
cases, but is only shown in detail for the modified Gumbel
function: each curve has four parameters, but once the value we 2.
of the first is chosen, the others are fixed by normalization I'(a) %

and the constraint6)=0, (?)=1. The family of one-

parameter curves are Fourier-transformed and the first foEquation (37) is also the distribution for theth smallest
terms in a Taylor expansion are set equal to those for theandom number from the set. After some algebra, one can
generating function, which fixes the value of the free paramshow that

eter. The method takes into account the skewness of the

s=(1-(my)—uy)/o,,

a
a“a,y

curve but not the kurtosis, and its accuracy is ultimately lim- 1 4T(a) 1 dr'(a)]?

ited. The goodness of fit can be measured by comparing the b= \/F(a) ga2  |T(a) oda |’

ratio of higher-order terms of the expansion of the test and

generating functions. For an exact solution, all higher ratios (38)
would be equal to unity, while for a poor fit they diverge s=-|In(a)- L il'(a) _

rapidly from this value. Other functions could be tested in b I'a) osa

the same way and an exact solution, unknown to us, may

well exist in the statistics literature. Now rewriting Eqs.(32) and(35), one finds

041106-10
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|0|ex;<gb0),

I1(6)
v
exp — Eeb(B*S)Jrce

6<0

(39
6>0,

with b=87/g,/2=1.105,5=0.745, andc=b. These as-
ymptotes differ only slightly from those for a generalized
Gumbel function witha= /2, first through the terng| for
fluctuations below the mean and second through the ter
expd) above the mean: the coefficieat= (7/2)b for the
modified Gumbel function, while=Db for the true asymp-

PHYSICAL REVIEW E 63 041106

2 3/2
92)
The first three equations arise from the constraints of normal-
ization of the distribution, while the last expresses these con-
straints in terms ofj, andgs. The equations can be solved

numerically. We find

b2=v¥'(a), b3g3( —W¥"(a).

a=1.5806801, b=0.9339355,

(44)
m $=0.3731792, w=2.1602858.

The constantd and s calculated in this way are shifted

tote. These differences are enough to ensure that the modilightly from the values extracted from the asymptotes,asbut

fied Gumbel equation is not an exact solution to EZ),

is close to our very appealing first trgr/2. Taking this value

however the comparison is so close that it is tempting to tryand calculating the constanks s, andw from normaliza-

to get a good fit to Eq(22) by solving for the constants
a, b, s, andw.
Fourier transforming Eq37) gives

g

©

dx
HG(0)=f_x Py

XT

. . X
ix0—isx+i—Ilna—alna

w
—ex
b

|

exdiPe(x)].

X
a IE

fw dx
. 2w

We can comparé g(x) with ®(x+/2/g,), assuming that the

(40

tion, one finds

a=m/2, b=0.938,

(45)
$s=0.374, w=2.14,

in very satisfying agreement with the first method of calcu-
lation.

Given this solution, we can compute the coefficient ratio
for the higher-order terms in Eq&1) and (42):

two Fourier transforms are nearly equal. The four constants

should be calculated by minimizing the difference between
the two functions. To do this, we can set the first four coef-
ficients of the Taylor expansion of these functions equal. For

ds(x), we have

ds(x)=ialna—iln(w/b)—ilnT(a)

i
+[—s—W¥(a)/b+In(a)/b]x+ Z—bz\If’(a)x2
+ 1 \I’"( ) 3

6b3

i " 4
w‘l’ (a)x

q;(4)(a)x5+ . (41)

12m°

where ¥ (2z) is the digamma functiod’’(z)/T'(z). For @,
we have

\/593

3037

2295

5057

x3—i g_42
295

Xo+ -

(42)

x4+

i
D(xV2/g;) = 5x°~

We therefore find that the four constants satisfy the relation

I'(a)

" sb=Ina—V(a),
a

b
w

(43

1 D(x\2 12g,b*
: (Xv2ig) | _ 2294 ~0.92650209,
0 ot gv(@
(46)
1 Pd(x\2/ 48,/2gsh®
E ( : 92) :_Slf%zo.szemza
o@0) ¢ | g9
(47)

The ratio of coefficients clearly diverges from unity, but it
does so slowly, indicating that the modified Gumbel function
should be a good fit to the curve over the physical range.
This is confirmed in Fig. 7, where we compare Eg7),
using the valueg44), with the exact result, from Eq22).

On a natural scale, the agreement is remarkably good over
the entire range, with the only visible deviation coming
around the maximum of the PDF, where the Gumbel curve is
very slightly lower. On a logarithmic scale there is excellent
general agreement over the whole of the plotted range, but a
slight deviation can be observed for probabilities below
103, For fluctuations below the mean, the deviation is be-
cause the true asymptotic behavior is quasiexponential,
x exp(—ax), and has a slight curvature, as discussed in the
preceding section. The results therefore confirm that, al-
though the generalized Gumbel function is an excellent ap-
proximation for the PDR22), it is not an exact solution.

From these results it is very tempting to take the general-
ized Gumbel function, witta exactly 77/2 as a working ana-
gytic expression for the PDF. However the connection with
extremal statistics remains an open quest{id4]. As dis-
cussed in Sec. V, the spin-wave Hamilton{@his diagonal-
ized in reciprocal space and the problem can be formulated
in terms of a set of statistically independent variables. The
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0.5 - - - - with w= 1. Following the same procedure as before, the gen-
erating functiond® (x) can be developed as a power series,
04|
2, . x2 2 2
— o3l CDL(X) — X( f—s+ ea+(r|_ 2) +i _(e2a+2¢r|__ e2a+4r|_)
E 2
06 02 | _ X3(%esa+9oflz+ %esa+3of/2_ %esa+5¢{/z)_
01} (49)
Comparing Eq(49) with Eq. (42), one finds the following
0 4 expressions fos, a, ando :
s=g?" o’E/Z
2 2
a=—zIn(e?"L—e°L), (50)
2
€ ‘/?— gTs;z — 13 e0tl24 pedutiz_ 3esaf/2)_
o 92
©
Eliminatinga ando | leads to a cubic equation farin terms
of @=(92/2)*%g5=1/7]|:
s8—3as?— a=0, (51

8 6 4 2 0 2 4
(m-<m>)/c which could be solved exactly. We have solved it numeri-
cally, verifying that there exists one real and two complex

FIG. 7. The PDF compared with the generalized Gumbel, Iog-roots We find

normal, andx2 functions described in the text.

PDF for extreme values of statistically independent variables s=3.45981, a=1.20109, o =0.28325.

can only follow three different asymptoti82,40 or limit

functions as the thermodynamic limit is taken. The only pos-  The function, with these parameters, is compared with the

sible limit functions from extremal statistics of the Gumbel calculated PDF in Fig. 7. The general quality of fit is again

form discussed here are far integer, witha=1 for the  excellent over the plotted range, with very small systematic

biggest or smallest values. deviations occurring in the wings of the distribution. It does
Chapmaret al.[34] have recently argued that the PDF for ot haye the correct asymptotes, either exponential on the

global quantities in any system with identifiable excitations gt or double exponential on the right, but as we have shown

on scales up to the system size should be dominated by €5 yhe preceding section, the true asymptotic behavior is only

treme values. The_y showed that the PDF of extreme Valu.el%ached outside the plotted regime, which explains why such
among 16 Gaussian random number generators approxis

mates to a Gumbel function with= 7/2. This is not one of a good fit can be achieved.

the predicted asymptot§40], and we suggest that the devia- We have not, for the moment, been able to develop a
tion must be due to a very slow approach to the limit func-PhYsical reasoning associated with the log-normal function
tion with system size. It therefore does not seem to be &1d the origins=3.4, although related ty, seems rather

correct description of the 2IXY data as we do have a limit &rPitrary, but we do not exclude an explanation in terms of
function that is well represented by E€®7) with a= /2. random multiplicative processes. Note that log-normal distri-

However, if the results of34] are relevant for nonequilib- Pution does appear in surface dynamics. Namely, starting
rium phenomena such as turbulence and self-organized critith a flat interface as an initial condition, the short-time
cality, it would suggest the interesting property that correclimit of the D=1 Edwards-Wilkinson dynamics yields a log-
tions to the asymptotic forms, or limit functions, are anormal distribution for the interface wid{l66].

generic feature of these systems.

. N C. Generalized ? distribution
B. Generalized log-normal distribution
The 2 distribution for v statistically independent degrees

The generalized log-normal distribution has the form of freedom has the form

_ iz[m(s— 6)_a]2 , HX( 0)=w(s— H)V/Z*lefa(s—g), (52)

w
——  _€X
\/ZWUE(S—Q) P{ 200

I (0)=
(48)  with
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a.1//2

I'(v/i2)’

(53
v=2a°.

As in the case of the Gumbel function, the generating func- g

tion can be found in closed form:
14
D (X)=x(0—5)+i Eln(l—ix/a), (54)

whose development up to fourth ordenireads to

D (X)=X(0—8)+ o X+ i X —— X3 ——x*
Y(X)=x(0—s) ZaX |4a2X 6a3x |8a4x

+O(X0) 4. (55)

This series can again can be compared with (Bg) to give

\ﬁ
a= 5= S, (56)

with numerical values

r=10.07155, a=2.24405, s=a, w=2.31233.
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FFT ——
Pearson

-8 -6 -4 -2 0 2 4
(m-<m>)/c
FIG. 8. The PDF compared with the fit obtained with the Pear-
son method described in the text.
D. Pearson’s curve

Pearsor{48,49 described an ingenious method of deriv-
ing a functional form for a PDF to fit experimental data,
given the first four moments of the latter. He considered the
differential equation

dIny_ x+b
dx bo+byx+bx?

(58)

and showed that if/ is a distribution, then the parameters
b,by,b, are specific functions of the first four moments. The
expression can then be integrated to giwéthin a normal-
ization factoj an approximate functional form for the PDF,
which by definition has the same principal moments as the
data to be fitted. The success of Pearson’s approach relies on
the observation that PDFs with the same moments are ap-

Comparing the function shown in Fig. 7 with these param_proximately coincident over the range of a few standard de-

eters with the calculated curve, there is reasonably gooV|at|ons, which is exactly the range of experimental interest.

agreement but this time deviation can be seen when plotteﬁ? the present case, the mean is zero and the standard devia-

both on a real and a logarithmic scale. On the Iogarithmict on is set to unity, so the shape of the curve depends only on

S oS the skewnessy, and kurtosisx.
;gzzlse, the deviation is stronger than for the other fitting func We find y=gs(2/g,)¥?=—0.8907 and «=3

2_ ; ; ; iR
One can see that describing the correlated system as 5394(2/92) =4.415, which gives the following solution:

finite number of degrees of freedom is a reasonably good (B— )"
approximation. It is an appealing concept and the calculation Y=VYo 5 (59
yields a system-size-independent number that depends (a—§)

uniquely on the skewness:=g3/g5==8/y?. If y developed
towards zero, them would diverge and thg? interpretation
would be consistent with a Gaussian distribution. However,:H(e), the fit to the exact expressidfig. 8) is good be-

guantitatively it is not correct and the true description is &\ veenx= — 6 andx=2. but the very large numbers involved
many-body ong52]. The difference between the two curves in Eq. (59 suggest that this functional form has no physical

f;%g? quantified by considering the ratio of the fourth'Ordersigniﬁcance. From this analysis we can conclude that data

collapse observed in RdR21] should be interpreted as mean-
ing that the third and fourth moments scale withandL in

in which £=x-0.39723,3=2.4787,0=11.430,q
=10.249,p=47.267, andy,=exp(105.02). Equating(x)

1
W i —
®,(x) >

(57)
®<x><4>=—i2%4,
2

the same way as they do in the critical 20 model.

IV. DISTRIBUTION IN THE D-DIMENSIONAL GAUSSIAN
MODEL

In this section, we study the asymptotics of the distribu-

so that® (x) )/ (x)*~0.0238, which is very far from 1. tion function in general dimensio. It is straightforward to
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10° the discrete sums and the integrals over the Brillouin zone,
even in the thermodynamic limisee Appendix € The cor-
) rect qualitative behavior is
10°
— C,pNE DD p<?
E 4
i 10
o gl: Alln N+Bl, D:2 (60)
10 Cip, D>2
Y and
10 R
10 8 6 4 2 0 2 4 8 2(2-D)ID
(m-<m>)/c CzpN ,  Db<4
FIG. 9. The PDF in three dimensions fo¢=8 and T/J g,=1{ (A;InN+B,)/N, D=4 (61)
=1.82. The dashed linéwith slope =2.5) is the exponential
asymptote given by Eq75) and is shifted with respect to the main C,p/N, D>4.

curve for clarity.

The lower and upper critical dimensiorn3,=2 andD =4,
generalize the development from EQO) to Eq. (22) for  are marked by the logarithmic divergence @f and g5,
arbitrary dimension by redefining(q) for dimensionD and  respectively.
summing over @-dimensional Brillouin zone. The general- Using the linearized order paramet@d), we find for D
ized expressioli22) can then be numerically transformed to <2 that g, diverges as a power oN giving (my=1
give II(6#). The results foD=3 andD=1 are shown in —TCLDN(Z‘D)’D, which is a poor approximation for a ther-
Figs. 9 and 10, where they are compared with data froninodynamic quantity bounded on the interjal,1]. Once
Monte Carlo and moIecuIar-dynamiCS simulations. There i?outside this restricted |OW_temperature regiony
again excellent agreement showing that E2p) is essen- <1[C,,N?P’P] poth the linear approximation for the
tially exact in the low-temperature regime, where the Hamil-order parameter and the quadratic approximation for the
tonian (7) is valid. At higher temperatures, the full Hamil- Hamiltonian break down and there is a divergence in the
tonian (5) generates vortex structures, E@3) is no longer  pehavior of the PDF, as calculated from H2) and as
valid, and the derivation of E422) breaks down. Within the  simulated numerically. The system is, of course, disordered
low-temperature approximation, there are three regiries: gt all temperatures, so that the corréety and o both vary
<2,2<D<4, andD=4, in addition to the special cad® 35 14/N and the PDF for the vector order parameter is a
=2. The different regimes can be seen from a dimensionalyo-dimensional Gaussian function centeredror 0. The
analysis ofg; andg,. As deviation from Gaussian behavior ppr  for m, as defined in Eq. (6), is P(m)
is due to the abnormal influence of the integral scale in thevmexp(_mzlzgz), analogous to a Maxwellian distribution
form of infrared divergences, we can replaBeby 14> and  of molecular speeds, and the thermodynamic system satisfies
recalculate they, by performing integrals over the Brillouin  the central-limit theorentsee Appendix A Results of nu-
zone between 2/N*® and 2. This procedure gives the merical simulation are shown in Fig. 11. As we have already
correct qualitative behavior, but there is a difference betweegeen, forb=2 the situation is different, as there is a large

region of temperature where the quadratic Hamiltonian cor-

10° =TT . . — rectly describes the physics even though Ex) is not a
MC o yd good approximation. In this regime of temperature, the PDFs

I1(6), for parameter$24) and(6) are, however, identical.
For dimensionD>2, the low-temperature expansion for

the order parameter gives consistent results faNadls long-
range order is stable an@m)~1—C;p7 is well defined.
Above D=4, our results agree with mean-field theo® (
=) where all sites are connected. Hefm)=1— 7/4 and
o= 1/2\2N, and for large but finitd, the universal function
IT is simply a Gaussian,

T=0.01

e S R L
(m-<m>)oc ()= n exp(—36), (62)

FIG. 10. The PDF in one dimensiolNE 128) at temperature ] o
T/J<12N. The dashed linéwith slope=1.04) is the exponential Which corresponds to the central-limit theorem for a collec-

asymptote for the low-temperature approximation given by(6g.  tion of N independent oscillators, each of expectation value
and is shifted with respect to the main curve for clarity. (m) and standard deviation/2/2N.
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A. Low-temperature calculation in D=1

If the low-temperature calculation f@ <2 is not terribly

PHYSICAL REVIEW E 63 041106

For #<—1,y is close to the first pole- 272//360 of the
right-hand side of Eq(64), which is similar to the 2D case

pertinent for the thermodynamic system, it highly relevant(30) except that the 1D extrema function is easier to evalu-
for the interface problem in the context of the EW modelate. Performing the saddle-point computation, we find Ihat

[24,28,29 and is exactly solvable iD= 1 [28]. In this case,
computing the differeng,, we find

20(2
9;=N/12, g,=N%720,..., 9=MNP,

amzr o P

where{(k)=3:",i ¥ is the Riemann zeta functid65]. The

behaves asymptotically as

I1(6)xexd 2m26/+/360], (65)

which is the same a£8]. The asymptotg65) is drawn on
Fig. 10 where it can be compared with the full calculation
and with simulation. The exponential tail is extremely well

expectation value of the magnetization and standard devigjefined and the predicted slope is clearly correct.

tion are
B 7N 1 7N
(my=exp = 27|=1- 2z
1
UZZ(N > coshrGR(r)—1>(m)2
r

1
z( f coshrN(x?—x+ 1/6)dx—1
0

<m>2~ TZNZ,

which means that the ration)/ o scales as N, although for
the parameters of the interface problém?)/o,2~0(1).
We evaluate the universal distributidh, using the general
Eq. (26) with G defined for theD=1. After some algebra,
we find forI1(6)

sinVixy360/2

2m 12 Vix\/360/2
dx
= | —exdidP(x)] (63

This expression is related directly to the functidnof Eqg.

In the regime of fluctuations above the mean, for
>1, @ is close to the constant360/12, and no extrema exist
for 6 beyond this value. In this casgs= 360/ 8(,/360/12
— 6)?], and the saddle-point approximation leads to the fol-
lowing asymptotic value fofl near this upper limit:

I1(6) o (\/360/12- 6) ~52exp(— £ \/360/(\/360/12- 6)),
(66)

which is the same result #28]. We refer the reader to Refs.
[24,28,29 for the precise coefficients in both asymptotic
limits.

In conclusion, we find that fop< — 1, the universal dis-
tribution again has an exponential tail, while for fluctuations
above the mean the PDF shoots to zero as
exd —36y/2(6— 6,)], with 6,=+/360/12. This upper limit
corresponds to the constraint that1.

It is worth pointing out in some detail here that the expo-
nential tail in the one-dimensional problem is not the result
of critical fluctuations. The small deviations in anglé; (

— ;) constitute a random walk witlwv~+1—m being the
radius of gyration, which scales correctly as the square root
of the walk length,L. The 1D linear order parameter or in-
terface problem is therefore nothing more than a simple ran-
dom walk[28], but despite this the PDF, as shown in Fig. 10,
is as follows: a standard result for such a walk is that the
mean radius of gyration is proportional to the mean end-to-
end distance$§ of the walk. It is easily shown that the PDF

(11) in Ref. [28]: TI(6)=®d(2—246/\/360). The method P(S) is Gaussiari30]. Changing the variable fror§ to X
used in[24,28,29 is based on path integration, but the re- =S?, one findsP(X)~ X~ Y2exp(—X/X,), a trivial distribu-
sults are the same as our saddle-point method, used to conien with an exponential tail. The PDF fav? has the same
pute the asymptotics. Settixg=iy, the extrema ofd satisfy = exponential tail, but does not show the essential singularity
the equation atw?=0 (m=1), thus we conclude that a rather surprising
. property of a random walk is that the PDFs for the radius of
) \/ﬁ_ 360 1 gyration and for the end-to-end distance are not the same.

12 272 =1 K2+y [360/2:2 The origin of this difference is that the average an@e
corresponding to the center of mass of an equivalent random
360 1 walk, fluctuates withL in the same way as the radius of
=- - gyration itself, and this lack of self-averaging removes the
2m? 2y /360727 essential singularity from the PDF af=0.

aa
+ ————cothm\'y360/272 | .
2y+/360/2:72

B. Asymptotic solutions in general dimension

We first evaluate the asymptotic valueldffor positive 6

(64) by solving the saddle point of E(R6), rescaling the variable
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x\/g,/2—x for convenience. Fob <2, the ratiog,/\/g, is  slowly for D=3 thanD=2, in qualitative agreement with
independent of the system size and, withiy, the equation the predictions here. Finally, we note that throughout the

to solve is range 2<D <4, the universal PDF is non-Gaussian, but the
hyperscaling  relation is invalid: (m)/oc~g,/\g,
0 fCSt Nqul ~N(P—2)/D
60— %= — =—da, (67)
4. NP 2N+ v2/a ForD>4, g, decreases asN/ consequently Eq71) has
92 * a yNela to be modified. We find, instead of E(/1), that
where cst is a constant. By setting°q/\y—q, we find / b3
i 14 -
that, for large and positiveg, 00<y(D_2)/2N(4_D)/4JN 1y q- °dq ~y, N>1.
o1 N(D—4)4D) 1+q2
(73)

91 _ gocy(sz)/szStN”D/v? q dq

vl 2
\/2_92 ety 1+g We can, in fact, replace the integrand inside the integral by
= Pt q°°dq since the integration domain is large, from which
~y(D*2)’2f ——dg, (68)  we find that the saddle point is proportional #&>1 and
0l+q deduce thatll is Gaussian on the right-hand side of the

curve. The same is true fdd =4 despite the logarithmic
divergence ofy,.

In the opposite limith<<— 1, for bothD=1 andD =2 the
asymptotic value of the distribution falls down exponentially

which means that is close to the upper boung /+/2g,.
Replacing the asymptotic value gffor the extrema in the
function ® (26), we find that

D/(D—2) [Egs. (32 and (65)]. We would now like to evaluate this
InTI(6)~ —cs< 91 _ 9) limit in general dimensions. In both cases, the coefficient of
V29, 0 is related to the value a, i.e.,C,p. Rewriting Eq.(30)

N . with discrete sumsgsee also Appendix Cwe have
+ logarithmic corrections,

N2(2-D)/D , 1
01 o= 4 2 2
0~ 20, D<2. (69 167"g, m=0 (mj+---+mp)
The logarithmic corrections come partly from the Gaussian X y , (79
integration around the saddle point and partly from other (M3+ -+ - +mB)+y2/g,N?P/P/472
terms in Eq.(68) that are not accurately evaluated within our ]
approximation. Note again th@=2 is a special case as, Where the sum excludes;=0,i=1,... D. The saddle-

instead of Eq(68), we have a logarithmic divergengeee  POINt equation has a solutionthat is the pole nearest the
Eq.(33)] and subsequently a double exponential fallifor ~ 01igin, y=—4m%/gl2NP -2/, e , for sets off m;} with
large 6. For the interval 22D <4, the ratiog, /\/g, and the ~ One element equal to 1, the others being zero.[Fer4 and
integral (68) are no longer finite and so we look to E§0)  'argeN, this pole is finite sinca, compensatesl?(C~2)/D,

for the asymptotic behavior: so that its value is Slmply= _4772 \/CZ,D/Z' Applylng the
saddle-point integration, we find that the dominant term in
1 [fest  dPq y the logarithm oflII is, below the mean,
fox — (70)

92J estn® Ng* 1+Y\/§/( \/g_Zqu).

By again settingN*Pq/\y—q and using the fact that
g,N2(~=2)/D s finite (60), we arrive at

C
|nH(0)~4w2\/$e, 9<—1, D<4, (75

and is linear ind for every dimension below 4. Included in

= P ~3dq Fig. 11 forD=3 is a fit, on the left-hand side of the form
gocy(P=2)/2 — y>L (7D (75), with C, 5 calculated numerically. There is again excel-
0 1+q lent agreement, which convincingly confirms the presence of

the exponential tail. In fact, true exponential behavior is
reached for smaller values @éfthan forD=2.

For D>4, the value of this pole diverges lik¢(° 4/
and the previous solution fails. In fact, the soluti@t8) for
positive # and y is also valid for negative values if
q®'da/(g®+1) is replaced by® ~*dqg/(g?>—1). Since the

6>1, 2<D<A4. (72)  integration domain is far from the pole of the denominator,
we can approximate the integrand in both caseg®by°dq,
In three dimensions, we therefore expect that the logarithnand we get the same result as EZp). We therefore finally
of the distribution falls off like6®, well above the mean. We conclude thall is also Gaussian on the left-hand side of the
have not tested this in detail, but the PDF does fall off morecurve and the central-limit theorem applies for-4.

The integral is convergent for<2D <4, and by replacing the
value fory in the saddle-point approximation, we get the
asymptotic form forl, in the limit of large and positive,

InTI(8)~ — csteP'(P~2)+ logarithmic corrections,
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Mo —— zero atD=4. We propose that the difference in the form of
axwell . .

MC . the PDF could be used as an experimental signature of the
underlying physics.

From the general evolution shown in Table I, one might
—_ T=20 expect a dependence on shape, with dimensional crossover
Eal 1 as the length scale in one direction changes from micro-
scopic to macroscopic. This is indeed the case, and for ex-
ample in two dimensions, the skewness and kurtosis of the
PDF calculated from Ed22) increase towards the values for
D=1 if the ratio of lengths in thet andy directions,L, and

0 : - : : - Ly, is varied continuously from unity. It would be extremely
0 005 01 015 02 025 03 035 interesting to establish if the same is true when the length
m scales are varied in turbulence experiments and numerically
FIG. 11. The PDF in one dimensiolNE 128) at temperature N the models of self-organized criticality.

T/3>12MN. The continuous line is Maxwell speeds distribution of To see how the "’_mi‘QfOtrOpy of _the PDF Com,es, from the
an ideal gas. long-wavelength excitations, we give an analysis in recipro-

cal space: the Hamiltonia(Y) is diagonalized,

V. CONCLUSION

J
Probability functions with exponential rather than Gauss- H= 2 qu G(a) ' Ref ¢q}2* (76)
ian behavior are a common feature of complex systems
[33,46,47,53—5p For example, the PDFs for velocity differ- where ¢, is the discrete Fourier transform 6f and the sum
ences at microscopic scales in fully developed turbulences over the Brillouin zoné57], with the thermodynamic vari-
show exponential tailg53]. This appears to be true in turbu- gple for eachq taken as the real part Qj,q_ Defining My
lence, not only for microscopic quantities but also for globaI:(1/2N)Re{¢q}2 the linear order parameter can be written

quantities; the energy injected into a closed turbulent flowmzl_zqmq, where them, are statistically independent
being a very well controlled and documented exampleyariables with PDF,

[10,13,58. Following these observations, we have proposed

that this is also a generic feature of complex systgis21]. BIAN 1 N

In this paper we have shown that, for the low-temperature P(mg)= 2. Mg PN, (77
phase of theXY model, a critical system at equilibrium,

analogous behavior occurs when a few long-wavelength andere, as we are principally interested in the modes at small
large-amplitude modes make their presence felt in the globaj=|q|, we have, without loss of generality, approximated
measure, which is typically a sum ov&(N) degrees of G(q) !~q2 The PDF formis thus nothing more than the
freedom. The exponential tail can occur in three physicallycomposite PDF for a set of independent spin-wave modes or
different situations. The first is in two dimensions, when thean “ideal gas” of par[idesy whose 0n|y pecu"arity is that the
system is critical and fluctuations occur over all |engthmass term varies mz_ The Goldstone modes have wave
scales. The second is in one dimension, when the system {g&ctorq=2#/L and hence make contributions®{1) tom,

not critical, but an exponential tail occurs for a particularwhijle the modes on the zone edge wiif 7 have only
global measure, relevant to problems of interface growthmicroscopic amplitude. This dispersion in amplitudes is the
whose moments are completely dominated by the integratey to the unusual behavior f@=2, as it violates one of
scale. The third is in three dimensions, also noncriticalthe conditions for the central-limit theorem to apply to a sum
where despite stable long-range order, the large-amplitudgf statistically independent variables, namely that the indi-

long-wavelength modes continue to make their presence feliidual amplitudes do not differ by too much. However, it is
The detailed form of the PDF in these three cases is quit@ot true that the Goldstone modes, by themselves,

different and easily discernible in experiment. In Table | wegive the complete PDF. The mean valugs ;mg)
show the evolution of the skewness and the kurtosis with_ (7 4-2n(q)dqg, where n(q)~qP ! is the density of

spatial dimension. The deviations from the Gaussian limiliates Fop =2, both limits of the integral are required and
are largest in one dimension, and decrease continually t9 yetailed cqlculqti_on givesS ;my) = (7/4)In(CN), with C
=1.87 and with critical exponenj=T/27J. The anomalous
term InN therefore reflects the fact that modes from all over

TABLE |. Variation of skewness and kurtosisk with dimen-

sionD. the Brillouin zone are relevant fgm) and through Eq(18)
D N B for the higher momentémP).
For D=1, only the lower limit of integration is required,
1 —-1.807 8.14 the upper limit can be set te, and the constantg, are
2 —-0.891 4.41 proportional toNP. As a result, the linear development of the
3 —0.354 3.31 order parameter in small angles, E@4), is a very poor
4 0 3.0 approximation for the thermodynamic quantity defined on

the interval[ 0,1]. The two expression®) and(24) describe
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different physical quantities. The former is directly related todiscussed[11,21] point towards a behavior analogous to
the interface width in the Edwards-Wilkinson model of in- criticality for an enclosed turbulent flow and for models
terface growth. The PDF for the full order parameter is conshowing self-organized criticality. However, the detailed
sistent with an uncorrelated system, that is, a paramagnaialysis presented here leaves many open questions, and
with a two-dimensional order parameter. For the linear ordemore experiment and simulation are clearly required if the
parameter, the PDF, shown in Fig. 10, does have an expaenerality and the limits of this proposition are to be tested
nential tail, but this is not the result of critical fluctuations, further.
rather it is the property of a simple random walk. We remark
further that dependence on a macroscopic length scale does ACKNOWLEDGMENTS
not, in itself, indicate critical behavior. Rather, critical be-
havior is exemplified by the case=2, where all length This work was largely motivated by our collaboration
scales are important between the microscopic and macravith K. Christensen, H. J. Jensen, S. Lise, Jpén, and M.
scopic cutoff. Nicodemi from Imperial College London and we are particu-
D=3 represents the opposite of the one-dimensionalarly grateful to H. J. Jensen and M. Nicodemi for bringing
case:(m) is controlled by the upper limit of integration and the theory of extremal statistics to our attention. In addition,
the result is unchanged by setting the lower limit to zerowe have greatly benefited from discussions with S. Fauve, N.
However, despite long-range order being stable and the sy&oldenfeld, J. Harte, A. Noullez, and Z."&aduring the
tem not being critical in the low-temperature phase, the exSIMU/CECAM planning meeting “Universal Statistics in
ponential tail persists. This is related to temperature being &orrelated Systems,” in Lyon, 29-31 March 2000 and from
dangerously irrelevant variabld58] near the zero- subsequent discussions with L. Berthier, E. Leveque, S. Mc-
temperature fixed point of a renormalization-group flow, be-Namara, P. Pujol, and again Z. &ain connection with the
tween the lower and the upper critical dimension. The condlD problem. Itis our pleasure to thank all these people. M.S.
stantg, now falls to zero with system size but it does soiS supported by the European Commissi@@ontract No.
more slowly than I [see Eq(61)]. As a result of this siow ERBFMBICT983561.
decay, the ratiagp/gg’z, p>2 in Eq.(20) is independent of
N and the distribution is non-Gaussian, desgteand g, APPENDIX A
both being zero in the thermodynamic limit. At low tempera-
ture the magnetization is finite, but the Goldstone mode in-
fluences the PDF sufficiently to produce an exponential tail.
A physical consequence of this anomaly is that the longitu- The central-limit theorem is a powerful result of probabil-
dinal susceptibility ity theory that provides the foundation for statistical thermo—
dynamics[59]. It states that the PDF of the suf=X ;7
of N statistically independent variatestends, in the I|m|t of
largeN and for moderate values of the vari@eto a Gauss-
ian distribution. As well as the statistical independence of the
is weakly divergent throughout the ordered phfté,35. z; , another key criterion for the theorem to hold is thatzhe
This is true for all magnetic systems with Heisenbergkor  areindividually negligible[36,60,61. At a critical point, the
symmetry. It could therefore be interesting to look for evi-first of these criteria is violated. The 2RY model is of
dence of the departure from Gaussian behavior experimenparticular interest here as it is diagonalizable into statistically
tally in a noncritical three-dimensional system. Precisionindependent degrees of freedom and maps directly onto a
temperature control would not be required, however as theroblem where the second criterion is violated: the direct
ratio o/(m) falls off as 1IN*3, the divergence in the suscep- space variables, that is, the spi8s are certainly individu-
tibility is very weak and this phenomenon may be out ofally negligible for large system sizd, but are strongly cor-
experimental reach. related. On the other hand, when diagonalized in reciprocal
Returning finally to critical systems, we have been able tespace, the spin-wave variables are statistically independent,
exploit a system interacting via a quadratic Hamiltonian atbut are no longer all individually negligible. In particular, the
exactly the lower critical dimension. In this particular case,long-wavelength modes make a significant impact on the
one has access to a critical point, with the fluctuation-fluctuations of the global measure, in this case the linearized
dominated behavior that this implies, while retaining theorder parametef24). The PDF for the full and the linear
benefit of Gaussian integration over phase space. As a resutttder parameters are identical, even when the quantities
all critical behavior can be calculated microscopically, with-themselves differ, which makes it an ideal system for the
out the need for either the renormalization group or the scalpractical study of the breakdown of the central-limit theo-
ing hypothesis. The only price one pays for this simplicity isrem. A conventional critical system cannot, in general, be
a critical system with a single independent exponent and thdiagonalized in this way, as evidenced by the divergent spe-
scaling relations satisfied through weak scaling only. In geneific heat.
eral, we believe that the analytic results that we have ob- Strictly speaking, the central-limit theorem does not apply
tained are useful for the understanding of finite-size scalingo the compound variat&, but rather to the normalized
and for the interpretation of experimental observations fronguantity —(Z))/N*2. This normalization is essential for a
more complex correlated systems. The examples we haweasonable PDF in the thermodynamic limit, as the standard

Some comments on the central-limit theorem
in critical systems

X~ 2 (M)~ () ~NED (79
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deviation for fluctuations about the mean vali® scales text also falls into this category, with=2/D —1/2. Here,p

with system size in the same way. If a normalization factordoes go to zero as the upper critical dimension is reached and
NY2t7 p+0, is chosen, then one obtains a distribution thathe danger of the irrelevant temperature variable disappears.
is concentrated either at zero or infinf]. We illustrate this An ordinary critical point is more complicated than those
with an example from statistical thermodynamics. The totabf the 2D XY model. In this case, the correlation length is
energyE of an ideal gas o molecules has a PDF of the only infinite precisely at the critical temperature. A non-
form P(E)~E*"*"* exp(~ BE). It is straightforward to con-  Gaussian limit function can therefore only be found on a
firm that P(E) tends to a5 function in the thermodynamic  ocys of points such thaf/L is a constant as the thermody-
limit, while P(E/N'?) tends to a Gaussian functid®2].  namic limit is taken. Thus, fixing the temperat(ire: T¢ and
One can see from this example that the function is neveg, . ing N will always cause a transition from non-Gaussian
truly Gaussian, "?deed Itis a}lways of the. formAr-(3N2 to Gaussian statistics. Conversely, fixiig=T, one will
—1)In E_.'BE’ which can eagly be made mt_:iependenﬂ\bf only arrive at the stable limit function in the thermodynamic
by choosing appropriate units. The central-limit theorem APfimit. One can therefore imagine a set of loci of constant

plies because the width of the distribution scalesN&&, : 1
which means that fluctuations with any physical significancePDF mt[Té_l t]hsf?ﬁe thgt convergﬁ Ic[rTC,Ol. I\_NeLtl?ve
are all concentrated near the turning point of the functiorPU99€S ed21] that there is one such locugT*(L),L "],

In P. The theorem only has meaning because of the signifi\-’vhere the PDF has approximately the same form as that of

cance one attaches to values of the variate that differ by onl§?® 2DXY model. Thus, to sit at the critical temperature and
a few standard deviations from the mean. In practical termsShangeL is not the same as traveling along the locus
it is therefore essential to normalize fluctuations to the stantT*(L),L~*]. From scaling argumerf64] one can check
dard deviation in order to test the central-limit theorem.  that the tails of the PDF a¢ should have the forn?(m)

In the case of dependent variables, the limit distribution~exp(—m°**) in order to yield the correct scaling relation in
can be different from the Gaussian form. Two types of dethe presence of a weak magnetic figldh)~h'?. We do not
pendent random variables can be defifi@d (i) weakly de-  find this, despite the same scaling relation holding for the 2D
pendent, in which the correlation function falls to a constantXY model with =87 J/kgT— 1. This difference may come
value in a finite range, and the standard deviation again vafrom the difference in trajectories in the space of variafiles
ies asyN; (i) strongly dependent, in which the fluctuations andL.
vary as a power oN different from3. Case(i) corresponds A final point concerns the central-limit theorem as applied

to a system with a finite correlation length. In c&sg which  to a vector order parameten, such as th&Y model. In the
includes systems with critical fluctuations, the central-limithjgh-temperature limit, the fluctuations in the vectorfol-

theorem does not hold, but a reasonable PDF can be obtain a two-dimensional Gaussian centeredrors 0 and the

by normalizing to the variance, hence to an appropriatepr for the scalam=|m| follows a “Maxwell speed distri-
power ofN, with p#0. Defining the(scalay order parameter  pytion” for a two-dimensional gas. In an ordered regime and
to be the intensive quantity=Z/N, and using the scaling even in the critical regime fob =2 [14], o<(m), which
relations for a finite system, one fings=(1—#%/2)/D. The  meansm behaves, to an excellent approximation, as a one-
limit distribution is now expected to be non-Gaussian, as calimensional quantity. The symmetry breaking therefore in-
be shown explicitly for the Ising mod¢#,63]. Note, how-  guces a change in topology for the fluctuationsninThis is

ever, thatp remains nonzero even at the upper critical di-generalizable to order parameters of higher dimension.
mension(taken asD=4 herg when =0 and where one

might legitimately expect a Gaussian PDF. The condifon
#0 may therefore be a necessary but not a sufficient condi- APPENDIX B
tion to ensure non-Gaussian order-parameter fluctuations.
Case(ii) is not actually limited to critical fluctuations: the The graphsg, can be written, in the largh- limit, in
example of a dangerously irrelevant variable discussed in theerms of power series. For example,

1 i § 1
N N2 m=1 =1 (4—2 cos 2rm/\/N—2 cos 2rn//N)2 N2 f=1 (4—2 cos 2rm/y/N)?’

(B1)

whereQ=(\/N—1)/2. The sum is dominated by the contributions for smaéindn, but as the polen=0, n=0 is explicitly
excluded from the sum, it remains finite even in the liM#-c. Taking only the first terms in a development of the cosines,
which is exact in the thermodynamic limit, one finds
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[ o0

I S ) g

At m=1nh=1 (m2+ n2)2

472 m=1m*
1l y 0 (B2)
360 g4 = (m?+n?)2’
and in general, fog,,
_1 i t .1 i i ! B3)
A2 m=1 m3K 4774 m=1n=1 (m2+ nz)k
APPENDIX C

For large and positivey, the functional form ofe is

¢(y)~(1/87) Iny+const. To evaluate it in detail, we use the
results of Appendix B to write
Q
1 1 1
o(y)=lim — 2 (—— =
Y Quw 2m2m=1 \m? m?+y
Q Q
1 1 1
to 2 2 2 2172 2402 :
27 m=1n=1\m"+n° m°+n<+ty

(CD

wherey=y/472. The first two summations give, in the limit
of large Q, a constant and a function &f which tends to

PHYSICAL REVIEW E 63 041106

The double sum can be rewritten as

1 2 9 1 1
— > > - -
272 m=1n=1\m?+n? m?+n’+y
1 2 - 1 1
-—2> - —R(Q,y),
272 m=1n=-1 \ m?+n? ml+ni+y
(Cy

where R is a correction term that vanishes in the limit of
large Q,

1

Cm2e n+y/’
(C4

The sum can be evaluated in the lirQit=c using the Abel-
Plana formuld 65],

“todx+ H(p)+ 2 (q)
p

= Im[f(q+iX)— f(p+ix)]

ZJ dx, (CH
zero for large argument: 0 exp2mx)—1
1 S 1 : : . o
im — > |- ——|==—. (c2)  wherefis any real function that satisfied the assumptions in
yow 22 m=1\m? m?+y/ 12 [65]. Applying this toR(Q,y), we have
|
1 Qzl 1 1 - x dx 1
R(Q—1y)=— —[77/2 arctariQ/m) ]+ —+4Qf
22 m=1 2(m*+Q?) 0 (x2—m2—Q?)2+4Q>%x2 exp2mx) —1
1 ¢t
- [77/2 arctaiQ/ \Vm?+y) |+ ———
272 m=1 \/m 2(m2+y+Q2)
% x dx 1
+4Qf — .
0 (x2—m?—y—Q?)>2+4Q%? exp2mx)—1

The first term tends, in the lardg@-limit, to the integral

A similar behavior is found for the fourth term, since in this

limit the dependence oy of this term vanishes ag Q2. The

Q714 other terms are corrections proportional to the inverse of
> —[77/2 arctamQ/m)]—>f —[77/2 arctari1/x)] some power ofQ, so thatR vanishes in the larg€ limit.
m=1 M The double sun{C3) can thus be reduced to a simple sum,

1 Inx dx since

=— f = Catalan. -
0 1+x? 1 1 = o )
————=——+ —cothnz
(CH) n=1 N2+ 72 272 2z
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We therefore have, for largg

1Q°°(1 1

22 m=1n=1 \m?+n?> m?+n+y
1 2 1 = 1
=— > - ——+_——cothem+ ————
27 m=1  2m? 2m 2(m?+y)

a ~
— ———cothmVm?+y

2Vm2+y

1 = 1 =
=——+ > ———(1-cothm\m’+y)
24 m=1 4m\m?+y

m m2+§/

1 1/1 1
+——(cothmm—1)+ —| —— ——|.
4m 4ar

(C8)

The series containing the hyperbolic functionyofanishes

PHYSICAL REVIEW E 63 041106

This can be proved by again applying the Abel-Plana for-
mula to the function I, since we know thaf _,1/m
=Inn+v. The constan& ,(1—cothmm)/47m in Eq. (C8)
can be rewritten as

mE:l 47_r—m(coth1-rm—l)=mE:l P nzl exp(—27mn)

. =
- E'nnll [1—exp(—2mn)],

(C10

and finally the result§C8)—(C10 give the asymptotic be-
havior of ¢ for largey:

T PP
AT A7 I P v

1Iﬁ 1 2 !
—Enn:l[ —exp(— wn)]+5+---.

(C1D)

in the limit of largey and the asymptotic behavior of the last The last term comes from a further study of the Abel-Plana

term can be evaluated with the Abel-Plana formid#),

i 1 1 fwd 1 1
—— | = Xl =————| +
m=1|Mm m?+y 1 X \x2+y

% x dx
2 j
0 (1+x?)(exp2mx—1)

N

=In(1+V1+y)—In2+y, (C9

where the constany is equal to

N ® X dx
y:§+ZJ .
0 (1+x?)(exp 2mx—1)

formula, which gives the other correction terms in the in-
verse power ofy. An identical analysis gives the finite-size
magnetization

<m>:exp( - %Tr G/N) , (C12

where TrG/N can be expanded as

1 1

NTI‘GIEMCN

2 o)
C=exp|g+2 In \/?—+27—4 InH [1—ex;:(—27-rn)]}
n=1

=1.8456. (C13
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